
g06451898


g06451723

| GENERATORS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 565-2335 \text { GENERATOR GP } \\ \text { S/N: MHE1-UP } \\ 50 / 60 \text {-HERTZ, } 1500 / 1800-\text { RPM. RANDOM WOUND, 1-BEARING } \\ \text { PART OF 565-2334 GENERATOR AR } \end{gathered}$ |  |  |  |  |  |  |  |
| SMCS -4450 |  |  |  |  |  |  | i07916260 |
| NOTE | $\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$ | $\begin{gathered} \text { GRAPHIC } \\ \text { REF } \\ \hline \end{gathered}$ | PART NUMBER | QTY | $\begin{aligned} & \text { PART NAME } \\ & 1 \end{aligned}$ | (PRODUCT LEVEL) | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$ |
| F |  |  | 241-4597 | 5 | RING |  |  |
| F |  |  | 241-4606 | 1 | SUPPORT-DIO |  |  |
| F |  |  | 241-4614 | 1 | HUB |  |  |
| F |  |  | 241-4619 | 1 | DIODE AS |  |  |
| F |  |  | 241-4620 | 1 | VARISTOR |  |  |
| F |  |  | 241-4622 | 5 | SEAL-0-RING |  |  |
| F |  |  | 243-5220 | 1 | BEARING |  |  |
| F |  |  | 493-2401 | 1 | FAN (15-BLA | DE) |  |
| F |  |  | 493-2406 | 1 | BRACKET |  |  |
| F |  |  | 493-2407 | 1 | ADAPTER |  |  |
| F |  |  | 493-2432 | 1 | SCREEN (AIR | EXIT) |  |
| F |  |  | 493-2433 | 1 | BRACKET |  |  |
| F |  |  | 493-2434 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 493-2435 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 493-2436 | 1 | COVER |  |  |
| F |  |  | 493-2437 | 1 | SCREEN (AIR | INLET) |  |
| F |  |  | 493-2439 | 1 | CAP-BEARING |  |  |
| F |  |  | 493-2440 | 1 | STATOR-EXC | TER |  |
| F |  |  | 493-2441 | 1 | ROTOR-EXCI |  |  |
| F |  |  | 493-2442 | 1 | PLATE |  |  |
| F |  |  | 493-2444 | 1 | TERMINAL |  |  |
| F |  |  | 241-4616 | 1 | DISC |  |  |
| F |  |  | 493-2831 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 497-9900 | 1 | PANEL-TERM | NAL BOX |  |
| F - NOT SHOWN |  |  |  |  |  |  |  |


g06451723

| GENERATORS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ```565-2337 GENERATOR GP S/N: MHE1-UP 50/60-HERTZ, 1500/1800-RPM. RANDOM WOUND, 1-BEARING PART OF 565-2336 GENERATOR AR``` |  |  |  |  |  |  |  |
| SMCS -4450 |  |  |  |  |  |  | i07916262 |
| NOTE | $\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$ | $\begin{gathered} \text { GRAPHIC } \\ \text { REF } \end{gathered}$ | PART NUMBER | QTY | ${\underset{1}{ }{ }_{2} \mathrm{PART}_{3} \mathrm{NAME}_{5}}^{\text {NAME }}$ | (PRODUCT LEVEL) | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$ |
| F |  |  | 241-4597 | 5 | RING |  |  |
| F |  |  | 241-4606 | 1 | SUPPORT-DIO |  |  |
| F |  |  | 241-4614 | 1 | HUB |  |  |
| F |  |  | 241-4619 | 1 | DIODE AS |  |  |
| F |  |  | 241-4620 | 1 | VARISTOR |  |  |
| F |  |  | 241-4622 | 5 | SEAL-0-RING |  |  |
| F |  |  | 243-5220 | 1 | BEARING |  |  |
| F |  |  | 493-2401 | 1 | FAN (15-BLA | DE) |  |
| F |  |  | 493-2406 | 1 | BRACKET |  |  |
| F |  |  | 493-2407 | 1 | ADAPTER |  |  |
| F |  |  | 493-2432 | 1 | SCREEN (AIR | EXIT) |  |
| F |  |  | 493-2433 | 1 | BRACKET |  |  |
| F |  |  | 493-2434 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 493-2435 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 493-2436 | 1 | COVER |  |  |
| F |  |  | 493-2437 | 1 | SCREEN (AIR | INLET) |  |
| F |  |  | 493-2439 | 1 | CAP-BEARING |  |  |
| F |  |  | 493-2440 | 1 | STATOR-EXC | TER |  |
| F |  |  | 493-2441 | 1 | ROTOR-EXCI |  |  |
| F |  |  | 493-2442 | 1 | PLATE (TERI | INAL) |  |
| F |  |  | 493-2444 | 1 | TERMINAL | EUTRAL) |  |
| F |  |  | 241-4616 | 1 | DISC |  |  |
| F |  |  | 493-2831 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 497-9900 | 1 | PANEL-TERM | NAL BOX |  |
| F - NOT SHOWN |  |  |  |  |  |  |  |


g06451687


g06459839

| GENERATORS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 569-3843 GENERATOR GP <br> S/N: MFE1-UP; MHE1-UP <br> 50/60-HERTZ, 1500/1800-RPM. RANDOM WOUND, 1-BEARING PART OF 570-8333 GENERATOR AR |  |  |  |  |  |  |  |
| SMCS -4450 |  |  |  |  |  |  | i07916495 |
| NOTE | $\begin{aligned} & \text { REF } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { GRAPHIC } \\ \text { REF } \end{gathered}$ | PART NUMBER | QTY | $\begin{array}{lll} \hline \text { PART } & { }_{1} & N_{4} A M E \\ 5 \end{array}$ | (PRoduct level) | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$ |
| F |  |  | 241-4597 | 5 | RING |  |  |
| F |  |  | 241-4606 | 1 | SUPPORT-DIO |  |  |
| F |  |  | 241-4614 | 1 | HUB |  |  |
| F |  |  | 241-4619 | 1 | DIODE AS |  |  |
| F |  |  | 241-4620 | 1 | VARISTOR |  |  |
| F |  |  | 241-4622 | 5 | SEAL-0-RING |  |  |
| F |  |  | 243-5220 | 1 | BEARING |  |  |
| F |  |  | 493-2401 | 1 | FAN (15-BLA | DE) |  |
| F |  |  | 493-2406 | 1 | BRACKET |  |  |
| F |  |  | 493-2407 | 1 | ADAPTER |  |  |
| F |  |  | 493-2432 | 1 | SCREEN (AIR | EXIT) |  |
| F |  |  | 493-2433 | 1 | BRACKET |  |  |
| F |  |  | 493-2434 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 493-2435 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 493-2436 | 1 | COVER |  |  |
| F |  |  | 493-2437 | 1 | SCREEN (AIR | INLET) |  |
| F |  |  | 493-2439 | 1 | CAP-BEARING |  |  |
| F |  |  | 493-2440 | 1 | STATOR-EXC | TER |  |
| F |  |  | 493-2441 | 1 | ROTOR-EXCI |  |  |
| F |  |  | 493-2442 | 1 | PLATE |  |  |
| F |  |  | 493-2444 | 1 | TERMINAL ( | EUTRAL) |  |
| F |  |  | 493-2446 | 1 | DISC-COUPL |  |  |
| F |  |  | 493-2831 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 497-9900 | 1 | PANEL-TERM | NAL BOX |  |
| F - NOT SHOWN |  | 俍 |  |  |  |  |  |


g06451764

| GENERATORS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 569-3845 GENERATOR GP <br> S/N: MFE1-UP; MHE1-UP <br> 50/60-HERTZ, 1500/1800-RPM. RANDOM WOUND, 1-BEARING PART OF 570-8336 GENERATOR AR |  |  |  |  |  |  |  |
| SMCS -4450 |  |  |  |  |  |  | i07916498 |
| NOTE | $\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$ | $\begin{gathered} \text { GRAPHIC } \\ \text { REF } \end{gathered}$ | PART NUMBER | QTY | ${\underset{1}{ }{ }_{2} \mathrm{PART}_{3} \mathrm{NAME}_{5}}^{\text {NAME }}$ | (PRODUCT LEVEL) | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$ |
| F |  |  | 241-4597 | 5 | RING |  |  |
| F |  |  | 241-4606 | 1 | SUPPORT-DIO |  |  |
| F |  |  | 241-4614 | 1 | HUB |  |  |
| F |  |  | 241-4619 | 1 | DIODE AS |  |  |
| F |  |  | 241-4620 | 1 | VARISTOR |  |  |
| F |  |  | 241-4622 | 5 | SEAL-0-RING |  |  |
| F |  |  | 243-5220 | 1 | BEARING |  |  |
| F |  |  | 493-2401 | 1 | FAN (15-BLA | DE) |  |
| F |  |  | 493-2406 | 1 | BRACKET |  |  |
| F |  |  | 493-2407 | 1 | ADAPTER |  |  |
| F |  |  | 493-2432 | 1 | SCREEN (AIR | EXIT) |  |
| F |  |  | 493-2433 | 1 | BRACKET |  |  |
| F |  |  | 493-2434 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 493-2435 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 493-2436 | 1 | COVER |  |  |
| F |  |  | 493-2437 | 1 | SCREEN (AIR | INLET) |  |
| F |  |  | 493-2439 | 1 | CAP-BEARING |  |  |
| F |  |  | 493-2440 | 1 | STATOR-EXCI | TER |  |
| F |  |  | 493-2441 | 1 | ROTOR-EXCI |  |  |
| F |  |  | 493-2442 | 1 | PLATE (TERI | INAL) |  |
| F |  |  | 493-2444 | 1 | TERMINAL | EUTRAL) |  |
| F |  |  | 241-4616 | 1 | DISC |  |  |
| F |  |  | 493-2831 | 1 | PANEL-TERM | NAL BOX |  |
| F |  |  | 497-9900 | 1 | PANEL-TERM | NAL BOX |  |
| F - NOT SHOWN |  |  |  |  |  |  |  |


g06451898


g06451723


$579-1020$| HEATER GP - SPACE |
| :---: |
| SN: S341-UP |
| AN ATTACHMENT |

SMCS - 7274

| NOTE | $\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & \text { GRAPHIC } \\ & \text { REF } \end{aligned}$ | PART NUMBER | QTY | ${ }_{1}$ PART $_{2} \mathrm{NAMES}_{3}{ }_{4} 6$ (PRODUCT LEVEL) | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | 190-2558 | 2 | FUSE (6-AMPERE) |  |
|  | 2 | 1 | 301-8313 | 2 | BLOCK-TERMINAL (4-TERMINAL) |  |
|  | 3 | 1 | 336-8570 | 1 | DIODE |  |
|  | 4 | 1 | 352-2951 | 1 | RELAY (24-VOLT) |  |
|  | 5 | 1 | 352-2952 | 1 | BASE-RELAY |  |
|  | 6 | 1 | 443-1279 | 2 | HOLDER-FUSE (30-AMPERE) |  |
|  | 7 | 1 | 374-5721 | 1 | CLIP-TERMINAL |  |
|  | 8 | 1 | 580-8446 | 1 | HARNESS AS-HEATER |  |
|  |  | 1 | 110-8714 | 6 | END-WIRE (18-GA) |  |




## 578-4983 ALARM GP-ANNUNCIATOR <br> S/N: S341-UP <br> AN ATTACHMENT

SMCS-7400, 7407
i07901593

| NOTE | $\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & \text { GRAPHIC } \end{aligned}$ | PART NUMBER | QTY | ${ }_{1}^{\text {PART }}{ }_{2}{\underset{3}{2}}_{4}{ }_{5}{ }_{5} 6$ (PRODUCT LEVEL) | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | 9W-2275 | 1 | RESISTOR (120-0HM) |  |
|  | 2 | 1 | 245-2987 | 1 | FILM-IDENTIFICATION (CAT) |  |
| M | 3 | 1 | 123-0707 | 10 | SCREW-HEX SOCKET (M4X0.7X20-MM) |  |
|  | 4 | 1 | 151-4977 | 10 | WASHER (4.445X9.525X1.092-MM THK) |  |
|  | 5 | 1 | 572-0773 | 2 | MODULE-CONTROL |  |
|  | 6 | 1 | 578-4901 | 1 | BOX AS |  |
| M |  | 1 | 205-7047 | 10 | INSERT-THREADED (M4X0.7-THD) |  |
|  | 7 | 1 | 578-4902 | 1 | PLATE |  |
|  | 8 | 1 | 578-4949 | 1 | LID AS |  |
|  | 9 | 1 | 578-6063 | 2 | HARNESS AS-ALARM |  |
|  |  |  |  |  | (EACH INCLUDES) |  |
|  |  | 1 | 1S-9593 | 2 | STRAP-CABLE |  |
| D |  | 1 | 5P-6001 |  | TUBE-HEAT SHRINK (4.75-MM DIA) (0.2-M) |  |
|  |  | 1 | 110-8714 | 10 | END-WIRE (18-GA) |  |
| E |  | 1 | 125-7875 |  | TUBE-HEAT SHRINK (7.44-MM DIA) (10-CM) |  |
| Y | 10 | 1 | 579-0011 | 1 | STRIP GP-TERMINAL | 199 |
| M | 11 | 1 | 5C-8312 | 2 | NUT (M4X0.7-THD) |  |
|  | 12 | 1 | 5H-4871 | 2 | PLUG |  |
|  | 13 | 1 | 4B-4863 | 2 | WASHER (4.7X11X1.2-MM THK) |  |
|  | 14 | 1 | 580-9731 | 1 | FILM- INFORMATION (EMERGENCY STOP) |  |
|  | 15 | 1 | 582-0555 | 1 | FILM- INFORMATION (BATTERY) |  |
| E | 16 | 1 | 8C-7524 |  | SEAL (109-CM) |  |

D - ORDER BY THE METER
E - ORDER BY THE CENTIMETER
M - METRIC PART
Y - SEPARATE ILLUSTRATION


VIEW OF AREAA (PARTS REMOVED FOR CLARITY)
<END>
g06475639

<END>
g06466115


# 519-8756 MODULE <br> S/N: S341-UP <br> AN ATTACHMENT 

SMCS-7498

|  | REF | GRAPHIC |  |  |  | PART NAME |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NOTE | NO | REF | PART NUMBER | QTY | 1 | 2 | 3 | 4 | 5 | 6 | (PRODUCT LEVEL) |

(NO SERVICED PARTS)

<END>
g06466950
SMCS-4490

## 569-6148 PANEL GP-CONTROL

S/N: S341-UP
PART OF 579-1018 WIRING GP-GENERATOR AN ATTACHMENT

SMCS -4490, 7451

| NOTE | $\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$ | $\begin{gathered} \text { GRAPHIC } \\ \text { REF } \\ \hline \end{gathered}$ | PART NUMBER | QTY | ${ }_{1}^{\text {PART }}{ }_{2} \mathrm{Na}_{3}{ }_{4}{ }_{5}{ }_{5} 6$ 6 (PRODUCT LEVEL) | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | 571-0321 | 1 | BAR (ELECTRICAL) |  |
|  | 2 | 1 | 160-7307 | 2 | GROMMET |  |
|  | 3 | 1 | 390-1208 | 1 | SHROUD |  |
|  | 4 | 1 | 390-1209 | 1 | SWITCH AS (EMERGENCY STOP) |  |
|  | 5 | 1 | 298-5189 | 4 | BRACKET-TIE |  |
|  | 6 | 1 | 391-0853 | 2 | LOCK AS |  |
|  |  |  |  |  | (EACH INCLUDES) |  |
|  |  | 1 | 391-0856 | 1 | LOCK |  |
|  | 7 | 1 | 574-3577 | 1 | PANEL AS |  |
| M |  | 1 | 3E-4304 | 32 | INSERT-THREADED (M6X1-THD) |  |
|  |  | 1 | 142-8194 | 10 | RIVET |  |
| M |  | 1 | 235-4451 | 15 | B0LT-FLANGE HEAD (M6X1X16-MM) |  |
|  |  | 1 | 251-8101 | 4 | CAP-NUT |  |
|  |  | 1 | 267-5648 | 2 | HINGE |  |
|  | 8 | 1 | 8T-4121 | 2 | WASHER-HARD (11X21X2.5-MM THK) |  |
| M | 9 | 1 | 235-4451 | 6 | B0LT-FLANGE HEAD (M6X1X16-MM) |  |
| Y | 10 | 1 | 569-6150 | 1 | STRIP GP-TERMINAL | 197 |
| M | 11 | 1 | 8T-4136 | 2 | B0LT (M10X1.5X25-MM) |  |
| Y | 12 | 1 | 571-0322 | 1 | STRIP GP-TERMINAL | 198 |
|  | 13 | 1 | 267-7280 | 3 | GROMMET |  |
|  | 14 | 1 | 449-0760 | 1 | PLUG-CAP |  |
| E | 15 | 1 | 147-1960 |  | RAIL (33-CM) |  |
| J | 16 | 1 | 5P-5637 |  | SEAL (14-DM) |  |

E - ORDER BY THE CENTIMETER
J - ORDER BY THE DECIMETER
m - METRIC PART
Y - SEPARATE ILLUSTRATION


## 390-1204 PANEL GP-ELECTRONIC

S/N: S341-UP AN ATTACHMENT
SMCS-4490, 7490

| NOTE | $\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$ | $\begin{gathered} \text { GRAPHIC } \\ \text { REF } \\ \hline \end{gathered}$ | PART NUMBER | QTY | $\begin{aligned} & \text { PART } \\ & 1_{2} \\ & \hline \end{aligned}$ | (PRODUCT LEVEL) | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | 435-6753 | 1 | PLATE |  |  |
|  | 2 | 1 | 440-1350 | 6 | BLOCK-TERMINAL |  |  |
|  | 3 | 1 | 561-2892 | 1 | MARKER AS-TERMINAL |  |  |



GRAPHIC \#1
<END>
g06362637


| SERVICE EQUIPMENT AND SUPPLIES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { 520-4219 FILM GP } \\ \text { S/N: S341-UP } \\ \text { AN ATTACHMENT } \end{gathered}$ |  |  |  |  |  |
| SMCS-7405, 7557 |  |  |  |  | i06849097 |
| NOTE | PART NUMBER | QTY | ${ }_{1}^{\text {PART }}{ }_{2} \mathrm{NaMME}_{3} \mathrm{NAM}_{5} 6$ (PRODUCT LE |  | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$ |
|  | 517-1065 | 2 | FILM-IDENTIFICATION | (L1) |  |
|  | 517-1066 | 2 | FILM-IDENTIFICATION | (N) |  |
|  | 517-1067 | 2 | FILM-IDENTIFICATION | (L2) |  |
|  | 517-1068 | 2 | FILM-IDENTIFICATION | (L3) |  |
| <END> |  |  |  |  |  |


| SERVICE EQUIPMENT AND SUPPLIES |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 587-1466 \text { FILM GP } \\ \text { S/N: S341-UP } \\ \text { AN ATTACHMENT } \end{gathered}$ |  |  |  |  |  |  |  |
| SMCS-7405, 7557 |  |  |  |  |  | i07852108 |  |
| NOTE | $\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$ | GRAPHIC | PART NUMBER | QTY | ${ }_{1}^{\mathrm{PART}}{ }_{2} \mathrm{NA}_{3} \mathrm{~N}_{4} 5{ }_{5} 6$ (PRODUCT LEVEL) |  | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$ |
| 1 |  | 1,2 | 1P-2807 | 4 | FILM-IDENTIFICATION (LIFT EYE LOCATION) |  |  |
|  | 2 | 1,2 | 3N-8591 | 6 | FILM-INFORMATION (DO NOT LIFT) |  |  |
|  | 3 | 1,2 | 3N-9344 | 2 | FILM-INFORMATION (CENTER OF GRAVITY) |  |  |
|  | 4 | 1 | 134-7258 | 1 | FILM- INFORMATION (EXTENDED LIFE COOLANT) |  |  |
|  | 5 | 2 | 142-7543 | 1 | FILM- INFORMATION (DIESEL FUEL FILL) |  |  |
|  | 6 | 1 | 144-0875 | 1 | FILM-INFORMATION (OIL DRAIN) |  |  |
|  | 7 | 1 | 144-0876 | 1 | FILM-INFORMATION (COOLANT DRAIN) |  |  |
|  | 8 | 1 | 573-8462 | 1 | FILM-IDENTIFICATION (CAT) |  |  |
|  | 9 | 1,2 | 225-3224 | 2 | FILM-WARNING (AUTOMATIC ENGINE START) |  |  |
|  | 10 | 1,2 | 225-3227 | 4 | FILM-WARNING (HOT SURFACE) |  |  |
|  | 11 | 1 | 225-3232 | 2 | FILM-WARNING (FALLING OBJECT) |  |  |
|  | 12 | 1 | 225-4256 | 1 | FILM-WARNING (HOT FLUID UNDER PRESSURE, U.S.) |  |  |
|  | 13 | 2 | 228-3369 | 1 | FILM-WARNING (DO NOT OPERATE, READ OMM) |  |  |
|  | 14 | 1 | 228-4798 | 1 | FILM-IDENTIFICATION (GROUND) |  |  |
|  | 15 | 2 | 228-7315 | 1 | FILM-WARNING (HOT SURFACE, HANDS CLEAR) |  |  |
|  | 16 | 2 | 267-1458 | 1 | FILM-INFORMATION (GENSET RATING) |  |  |
|  | 17 | 1,2 | 272-1732 | 2 | FILM-LIFTING (FALLING OBJECT) |  |  |
|  | 18 | 1,2 | 424-6100 | 4 | FILM-WARNING (ELECTROCUTION HAZARD, READ OMM) |  |  |
|  | 19 | 2 | 263-5804 | 1 | FILM-IDENTIFICATION (FUEL) |  |  |
|  | 20 | 2 | 573-0882 | 1 | FILM-IDENTIFICATION (CAT) |  |  |

REFER TO ALL ILLUSTRATIONS OF THIS GROUP FOR AUXILIARY VIEWS


GRAPHIC \#1
g06460794


## SERVICE EQUIPMENT AND SUPPLIES

## 587-1468 FILM GP <br> S/N: S341-UP <br> an Attachment

SMCS-7405, 7557
i07917983

| NOTE | $\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$ | $\begin{aligned} & \text { GRAPHIC } \\ & \text { REF } \end{aligned}$ | PART NUMBER | QTY | ${ }_{1}^{\text {PART }}$ | $\begin{aligned} & \text { SEE } \\ & \text { PAGE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | 124-2456 | 2 | FILM-INSTRUCTION (NO STEP) |  |
|  | 2 | 2,3 | 134-7258 | 3 | FILM-INFORMATION (EXTENDED LIFE COOLANT) |  |
|  | 3 | 1 | 142-7543 | 1 | FILM-INFORMATION (DIESEL FUEL FILL) |  |
|  | 4 | 2 | 144-0875 | 1 | FILM-INFORMATION (OIL DRAIN) |  |
|  | 5 | 2 | 144-0876 | 1 | FILM-INFORMATION (COOLANT DRAIN) |  |
|  | 7 | 1,2 | 1P-2807 | 4 | FILM-IDENTIFICATION (LIFT EYE LOCATION) |  |
|  | 8 | 2 | 224-9828 | 1 | FILM-WARNING (SHOCK HAZARD) |  |
|  | 9 | 1,2,3 | 225-3227 | 6 | FILM-WARNING (HOT SURFACE) |  |
|  | 10 | 1,2,3 | 225-3232 | 4 | FILM-WARNING (FALLING OBJECT) |  |
|  | 11 | 2 | 228-3369 | 1 | FILM-WARNING (DO NOT OPERATE, READ OMM) |  |
|  | 12 | 3 | 228-4798 | 1 | FILM-IDENTIFICATION (GROUND) |  |
|  | 13 | 2 | 228-7315 | 1 | FILM-WARNING (HOT SURFACE, HANDS CLEAR) |  |
|  | 14 | 1 | 263-5804 | 1 | FILM-IDENTIFICATION (FUEL) |  |
|  | 15 | 3 | 267-1458 | 1 | FILM-INFORMATION (GENSET RATING) |  |
|  | 16 | 1,2 | 299-7882 | 2 | FILM-WARNING (DO NOT OPERATE, READ OMM) |  |
|  | 17 | 1,2 | 571-4652 | 2 | FILM-IDENTIFICATION (CAT) |  |
|  | 18 | 1,2,3 | 573-8462 | 3 | FILM-IDENTIFICATION (CAT) |  |
|  | 19 | 1,2 | 308-2085 | 2 | FILM-INSTRUCTION (LIFT CAPACITY, READ OMM) |  |
|  | 20 | 1,2,3 | 381-1810 | 4 | FILM-WARNING (AUTOMATIC ENGINE START) |  |
|  | 21 | 2,3 | 3N-8591 | 6 | FILM-INFORMATION (DO NOT LIFT) |  |
|  | 22 | 1,2 | 3N-9344 | 2 | FILM-INFORMATION (CENTER OF GRAVITY) |  |
|  | 23 | 2,3 | 424-6100 | 4 | FILM-WARNING (ELECTROCUTION HAZARD, READ OMM) |  |

REFER TO ALL ILLUSTRATIONS OF THIS GROUP FOR AUXILIARY VIEWS


GRAPHIC \#1
g06464149


GRAPHIC \#2
g06464150



SERVICE EQUIPMENT AND SUPPLIES

<END>
g06466515


| Part Page | Part Page | Part Page | Part Page |
| :---: | :---: | :---: | :---: |
| 0 | 3 | $\begin{aligned} & \text { 3S-9643 . . . . . . . . } 79 \\ & \text { 3T-4965 . . . . . . . . } 78 \end{aligned}$ | 131 134 |
| OL-1026 . . . . . . . 36 | 3B-0623 . . . . . . . . 17 |  | 135 |
| OL-1143 . . . . . . . . 25 | 19 |  | 137 |
| OS-1589 . . . . . . . . 7 | 46 | 4 | 138 |
|  | 3B-6488 . . . . . . . . 95 |  | 5P-8246. . . . . . . 32 |
|  | 3D-2824 . . . . . . 78 |  | 5P-8247. . . . . . . 29 |
|  | 3E-0105 . . . . . 174 | 4B-4863 . . . . . . . . 280 | 5P-8347 . . . . . . 5 |
|  | 3E-3377 . . . . . . . 1770 | 4D-3704 . . . . . . . . . 7 | 5P-9085 . . . . . . . . 213 |
| 1B-3867 . . . . . . . 85 | 3E-3389. . . . . . . . 180 | 4F-5695 . . . . . . . 16 | 5S-2106 . . . . . . . . 25 |
| 1B-7182 . . . . . . . 122 | 3E-4041. . . . . . . . 78 | 4I-0472 . . . . . . . 76 | 5S-9062 . . . . . . . . 25 |
| 1B-8705 . . . . . . . . 8 | 3E-4096 . . . . . . . 201 | 4J-5573 . . . . . . . 89 |  |
| 1H-3338 . . . . . . 128 | 202 |  |  |
| 1H-4393 . . . . . . 174 | 3E-4304 . . . . . . 154 | 4N-2514. . . . . . . . 30 | 6 |
|  | 156 | 4N-8150 . . . . . . . 60 |  |
|  | 157 | 4P-3818 . . . . . . . 92 | 6A-5591 . . . . . . . 42 |
| 1L-4775 . . . . . . . . 6 | 153 | 4P-4369 . . . . . . 102 | 6D-4636 . . . . . . . 100 |
| 1M-6119 . . . . . . . . 243 | 165 | 4P-7581 . . . . . . 213 | 6D-7146 . . . . . . . . 68 |
| 1M-6120 . . . . . . . . 243 | 185 | 215 | 6I-1418 . . . . . . . 159 |
| 1P-0436 . . . . . . 122 | 282 | 4P-7582 . . . . . . . 196 | 6I-2933 . . . . . . . . 91 |
| 1P-0810 . . . . . 166 | 3E-4352...... 44 | 4P-8134 . . . . . . 213 | 6I-4027 . . . . . . . 115 |
|  | 3E-4352 • • • • • 66 |  | 6K-0806 . . . . . . . . 217 |
|  | 3E-6788. . . . . . . 69 |  | 6N-0508 . . . . . . . . 100 |
| $\text { 1P-2807 . . . . . . . . } 291$ | 3E-7427. . . . . . . . 62 | 5 | 6N-7611. . . . . . . 96 |
|  | 3E-8016 . . . . . . . . 34 |  | 6N-8863 . . . . . . . . 42 |
| 1P-4278 . . . . . . . 115 | 3E-8016..... 42 | 5C-2890 . . . . . . . . 215 | 6U-1989 . . . . . . . 25 |
| 1R-0749 . . . . . . . . 122 | 3F-9556 . . . . . . . . 130 | 5C-7261 . . . . . . . . 128 | 6V-0405 . . . . . . . 40 |
| 1R-1808 . . . . . . . . 64 | - . . . 131 | ( . . . . - 131 | 6V-0852 . . . . . . . 116 |
| 1S-7251 . . . . . . 196 | 134 | 132 | 6V-1820 . . . . . . . 119 |
|  | 135 | 138 | 6V-1897 . . . . . . 1129 |
|  | 137 | 158 | 6V-2316. . . . . . . 139 |
| 1S-7252 . . . . . . . . 196 | 138 | 5C-8312 . . . . . . . 181 | 131 |
| 241 | 3J-7354. . . . . . . 70 | 215 | 133 |
| 1S-9593 . . . . . . 166 | 3K-0360.... . 62 | 5C-9553 . 128 | 134 |
|  | 3K-0360 • • • • • 72 | 5C-9553 . . . . . . 128 | 135 |
|  | 3K-8909 . . . . . . . . 129 | 5D-9344. . . . . . 32 | 137 |
|  | 3L-1425. . . . . . . . 25 | 5F-0304 . . . . . . . . 32 | 6V 2317 138 |
|  | 3L-6513. . . . . . 228 | 5G-3676 . . . . . . 117 | 6V-2317 . . . . . . 34 |
|  | 229 | 5H-4871 118 | 70 |
| 1U-8846 . . . . . . 32 | 3L-7634. . . . . . 2227 | 5H-4871 . . . . . . . . 280 | 6V-2722 . . . . . . . . 169 |
|  | 3L-7634 • • • • 2231 | 5L-4504 . . . . . . . . 119 | 6V-3250 . . . . . . . 82 |
|  | 232 | 5L-4763 . . . . . . . 36 | 6V-3251 . . . . . . . 50 |
|  | 235 | 5P-0537. . . . . . . 55 | 80 |
|  | 242 | 122 | 81 |
| 2A-1162 . . . . . . 32 | 3N-3469 . . . . . . . 301 | 219 | 6V-3535 . . . 34 |
| 2A-4429 . . . . . . . 22 | 3N-3790 . . . . . . . 301 | 5P-0765 . . . . . . 72 | 6V-3536 . . . . . 12 |
| 2D-4867 . . . . . . . . 25 | 3N-8591 . . . . . . . 291 | 5P-1076 . . . . . . . 87 | 6V-3538 . . . . . . 17 |
| 2D-6642 . . . . . . . . 51 | 294 | 5P-1477 . . . . . . . 181 | 6V-3668 . . . . . 37 |
| 2K-4973 . . . . . . . . 26 | 3N-9344 . . . . . . . 291 | 5P-2600 . . . . . . . 144 | 6V-3668 . . . . . . 319 |
| 2L-8054 . . . . . . . 169 | 294 | 236 | 6V-3822 103 |
| 2L-8061 . . . . . . . . 169 | 3S-2093 . . . . . . . 115 | 237 | 6V-3834 . . . . . 63 |
| 2L-8066 . . . . . . . 169 | 168 | 5P-4115 . . . . . . 201 | 6V-3918 . . . . . . 69 |
| 2L-8067 . . . . . . . 169 | 170 | 202 | 6V-3918 . . . . . . ${ }^{413}$ |
| 2L-8071 . . . . . . . 181 | 171 | 5P-4889 . . . . . . . 123 | 6V-3940 213 |
| 2L-8078 . . . . . . . . 183 | 174 | 5P-5598 . . . . . . . . 22 | 6V-3940 . . . . . . 63 |
| 2L-8081 . . . . . . . 169 | 177 | 5P-5637 . . . . . . . 286 | r19 |
| 2M-9780 . . . . . . . 76 | 178 | 5P-5991 . . . . . . . 116 | 6V-3964 . . . 158 |
| 2N-5243 . . . . . . . 70 | 181 | 5P-6001 . . . . . . . 167 | 6V-3965 . . . . . . 115 |
| 2P-4304 . . . . . . 60 | 183 | 169 | 6V-4248. . . . . . 115 |
| 2P-7636 . . . . . . 76 | 185 | 170 | 6V-4248 • • • • • • ${ }^{\text {c }}$ |
| 2S-0736 . . . . . . . 196 | 196 | 280 | V-4249 . 42 |
| 2S-5658 . . . . . . . . 28 | 208 | 5P-6727 . . . . . . . 34 | 6V-4249. . . . . . . 42 |
| 2Y-5829 . . . . . . 52 | 213 | 5P-7979 . . . . . . . 25 | 6V-5063 . . . . . . 22 |
|  | 215 | 5P-8068 . . . . . . . 69 | 79 |
|  | 218 | 5P-8211 . . . . . . 42 | 89 |
|  | 219 | 5P-8245 . . . . . . . 26 | 81 |
|  | 245 | 37 | 6V-5064... 70 |
|  | 3S-6049 . . . . . . . . 243 | 42 | 6V-5064 • • • • • • 81 |
|  | 3S-6050 . . . . . . . . 243 | 119 | 6V-5134 69 |
|  | 3S-6605 . . . . . . . 54 | 130 | 6V-5134. . . . . . . 69 |


|  | PART NUN | ER INDEX |  |
| :---: | :---: | :---: | :---: |
| Part Page | Part Page | Part Page | Part Page |
| 6V-5192 . . . . . . . . 34 | 7C-3081 . . . . . . . . 60 | 8T-0337 . . . . . . . . 181 | 200 |
| $\text { 6V-5215 . . . . . . . . } 66$ | 7C-3082 . . . . . . . 60 | 8T-0338 . . . . . . . . . 8 | 215 |
|  | 7C-3083 . . . . . . . 60 | 8T-0360 . . . . . . . . 31 | 8T-4196 . . . . . . . . 26 |
| 6V-5217 . . . . . . . 8 | 7C-3954 . . . . . . . . 60 | 8T-0640 . . . . . . . . 55 | 8T-4198 . . . . . . . . 100 |
|  | 7C-7851 . . . . . . . 31 | 8T-0643 . . . . . . . . 26 | 8T-4200 . . . . . . . . 133 |
| 6V-5218 . . . . . . 67 | 7C-7852 . . . . . . . 31 | 84 | . . 134 |
|  | 7C-8581 . . . . . . . 22 | 8T-0644 . . . . . . . . 121 | 8T-4222 . . . . . . . . 26 |
| 6V-5219 . . . . . . . 77 | 7E-6508 . . . . . . . . 219 | 8T-1887 . . . . . . . . 116 | 8T-4223 . . . . . . . . . 6 |
|  | 7E-7977 . . . . . . . 22 | 8T-1888 . . . . . . . . 116 | 9 |
|  | 7E-7978 . . . . . . . 22 | 8T-1889 . . . . . . . . 116 | 10 |
| 6V-5221 . . . . . . . . . 4 | 7F-9504 . . . . . . . 95 | 117 | 26 |
| 69 | 7H-3937 . . . . . . . . 129 | 118 | 38 |
| 70 | 133 | 8T-1890 . . . . . . . . 116 | 39 |
| 6V-5696 . . . . . . . . 56 | 7K-1181 . . . . . . . . 78 | 117 | 95 |
| 6V-5729 . . . . . . . . 26 | 115 | 118 | 181 |
| 6V-5839 . . . . . . . . . 7 | 183 | 8T-2428 . . . . . . . . 177 | 215 |
| 59 | 203 | 8T-2910 . . . . . . . . 201 | 236 |
| 84 | 204 | 202 | 237 |
| 100 | 205 | 8T-3490 . . . . . . . . 76 | 238 |
| 102 | 206 | 8T-3597 . . . . . . . . 38 | 239 |
| 103 | 207 | 39 | 8T-4224 . . . . . . . . 11 |
| 116 | 7L-6580 . . . . . . . . 79 | 87 | 128 |
| 119 | 7N-2900 . . . . . . . . 25 | 8T-3612 . . . . . . . 74 | 129 |
| 123 | 7N-5274 . . . . . . . . 243 | 75 | 130 |
| 213 | 7N-5683 . . . . . . . . 17 | 8T-4121 . . . . . . . . 26 | 131 |
| 6V-5842 . . . . . . . . 85 | 7T-9346 . . . . . . . 228 | 76 | 132 |
| 6V-5843 . . . . . . . . 36 | 229 | 116 | 133 |
| 6V-6353 . . . . . . . . 103 | 233 | 117 | 134 |
| 6V-6609 . . . . . . . . 50 | 7T-9987 . . . . . . . . 243 | 118 | 135 |
| - 79 | 7T-9988 . . . . . . . . 243 | 129 | 137 |
| 192 | 7W-0482 . . . . . . . . 177 | 133 | 138 |
| 6V-6923 . . . . . . . . 125 | 197 | 179 | 8T-4244 . . . . . . . . . 6 |
| 6V-7350 . . . . . . . . 84 | 7W-9094 . . . . . . . . 185 | 215 | 95 |
| 6V-8076 . . . . . . . . 115 | 7X-0321 . . . . . . . . 26 | 241 | 130 |
| 6V-8149 . . . . . . . . 26 | 7X-0613 . . . . . . . 76 | 286 | 131 |
| 6V-8197 . . . . . . . . 10 | 7X-0870 . . . . . . . 69 | 8T-4123 . . . . . . . . 118 | 134 |
| 6V-8212 . . . . . . . . 213 | 7X-2538 . . . . . . . . 76 | 8T-4133 . . . . . . . . 26 | 135 |
| 6V-8225 . . . . . . . . 34 | 7X-2619 . . . . . . . . 132 | 76 | 137 |
| 6V-8359 . . . . . . . . 60 | 7X-2621 . . . . . . . . 241 | 129 | 138 |
| 6V-8398 . . . . . . . . 118 | 7X-2622 . . . . . . . . 38 | 133 | 8T-4896 . . . . . . . . 26 |
| 6V-8625 . . . . . . . . 115 | 7X-7729 . . . . . . . . 200 | 179 | 8T-4908 . . . . . . . . 128 |
| 6V-8639 . . . . . . . . 115 |  | 200 | 129 |
| 6V-8675 . . . . . . . . 37 |  | 8T-4136 . . . . . . . . 286 | 132 |
| 6V-8724 . . . . . . . 115 | 8 | 8T-4137 . . . . . . . . 116 | 8T-4956 . . . . . . . . 236 |
| 6V-8754 . . . . . . . . . 6 | 0 | 8T-4139 . . . . . . . . 38 | 238 |
| 6V-8836 . . . . . . 213 | 8C-3089 . . . . . . . . 100 | - 39 | 8T-4984 . . . . . . . 87 |
|  | 8C-3100 . . . . . . . . 85 | 130 131 | 8T-4988 . . . . . . . 91 |
| $6 V-8837$ $6 V-8843 .$. | 8C-3445. . . . . . . . 59 | 131 | 8T-5041 . . . . . . . . 26 |
| 6V-8995. . . . . . . . 118 | 8C-3446 . . . . . . 59 | 215 | 8T-6466 . . . . . . . . . 26 |
| 6V-9023 . . . . . . 228 | 8C-5064 . . . . . . 116 | 8T-4140 . . . . . . . 38 | 8T-6466 . . . . . 100 |
| 229 | 8C-5064 . . . . . . . 116 | 8T-4174 . . . . . . . 24 | 8T-6876 . . . . . . . . 115 |
| 233 | 8C-6354 . . . . . 215 | 8T-4183 . . . . . . . . 87 | 8T-8729 . . . . . . . 169 |
| 6V-9027 . . . . . . . 49 | 8C-7524 . . . . . . . . 280 | 8T-4186 . . . . . . . . 26 | 180 |
|  | 8E-8439 . . . . . . . . 36 | 8T-4189 . . . . . . . 135 | 184 |
|  | 8F-7242. . . . . . . . 158 | 8T-4193 $\begin{array}{r}137 \\ 38\end{array}$ | 8T-8730 $\begin{aligned} & 217 \\ & 169\end{aligned}$ |
| $\text { 6V-9189 . . . . . } 74$ | 8H-9789 . . . . . . . 25 | 8T-4193 . . . . . 38 | 8T-8730 . . . . . 169 |
|  | 8」-4351 34 | 8T-4194 . . . . . . . . 95 | 8T-8737 . . . . . . . . 166 |
| 6V-9666 . . . . . . . . 85 | 8J-4351 . . . . . . . . 69 | (130 |  |
| 6V-9830 . . . . . . . . 118 | 8L-2777 | 131 | 169 |
| 6V-9873 . . . . . . . 116 | 8L-8413 . . . . . . . . 174 | 134 | 171 |
|  | 8L-8413 . . . . . ${ }^{208}$ | 135 137 | 8T-8916 196 |
|  | 243 | 137 138 | $8 T-8916 . .$. $8 T-8917$ |
|  | 301 | 8T-4195 . . . . . $\begin{array}{r}138 \\ 26\end{array}$ | 8T-8917 . . . . . . . . 96 |
|  | 8N-5305 . . . . . . . . 25 | 8T-4195 • • • • 76 | 8T-9598. . . . . . . 85 |
| 7B-2742 . . . . . . . 122 | 8P-0056 . . . . . . . 100 | 87 | 8T-9655. . . . . . . . 159 |
| 7C-1445 . . . . . . 32 | 8S-2331 . . . . . . . . 196 | 100 | 8Y-9603 . . . . . . . 196 |
| 7C-1571 . . . . . . . . 91 | 8T-0226 . . . . . . . . 32 | 117 |  |
| 7C-1583 . . . . . . . 55 | 8T-0275 . . . . . . . . . 4 | 118 |  |
| 7C-1821 . . . . . . . . 69 | 8T-0281 . . . . . . . 31 | 129 |  |
| 7C-1822 . . . . . . . 69 | 8T-0292 . . . . . . . 79 | 133 |  |




| Part | Page | Part | Page | Part | Page | Part | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 257 |  | 265 | 263-0857 | . . 169 |  | 67 |
|  | 259 |  | 267 | 263-4920 | . . . 19 | 296-3447 | . . 123 |
|  | 261 |  | 269 | 263-5804 | . 291 | 296-8178 | . . 6 |
|  | 263 |  | 271 |  | 294 | 296-8179 | . . 6 |
|  | 265 |  | 273 | 263-8719 | . . 130 | 296-8187 | . . 6 |
|  | 267 |  | 275 |  | 135 | 297-4677 | . . 6 |
|  | 269 | 243-6717 | . . . 12 | 263-8720 | . . 130 | 298-5189 | . . 286 |
|  | 271 | 244-2331 | . . . . . . 215 |  | 134 | 299-3112 | . 24 |
|  | 273 | 244-8677 | . . . . . 2 |  | 135 | 299-6793 | . . 3 |
|  | 275 |  | 63 | 263-9320 | . . 133 |  | 4 |
| 241-4616 | . 249 | 245-1398 | . 78 | 264-4288 | . . 63 | 299-7882 | . . 294 |
|  | 257 | 245-2875 | . . 108 | 264-5732 | . . . 168 |  |  |
|  | 265 |  | 109 | 264-7029 | . . . 168 |  |  |
|  | 267 | 245-2987 | . . 280 | 264-7030 | . . 168 |  | 3 |
|  | 269 | 245-6095 | . . 51 | 264-7111 | . . . . . . 87 |  | 3 |
|  | 273 | 246-2009 | . . . . . 169 | 265-1113 | . . . . . . 44 |  |  |
| 241-4619 | . 249 | 246-2010 | . . . . . . 169 | 265-2796 | . . . . . . . 132 | 300-3086 | $\begin{array}{rr} . & 44 \\ . & \text {. } 189 \end{array}$ |
|  | 251 | 246-3144 | . . . . . . . 12 | 265-4123 | . . . . . . 169 | 300-9805 | $\begin{array}{r} +189 \\ -191 \end{array}$ |
|  | 253 | $246-7013$ $247-7133$ | . . . . . . . 171 | 267-1458 | . . . . . . 291 | 300-9806 | . . 185 |
|  | 257 | 247-8195 | . . 169 | 267-5648 | . . 286 |  | 190 |
|  | 259 | 247-8196 | . . . . 169 | 267-7280 | . . . . . . 286 | 301-0222 | - . 2 |
|  | 261 | 248-1467 | . . 22 | 268-1007 | . . 174 | 301-2262 | 50 |
|  | 263 | 248-4840 | . . . . 99 |  | 208 | 301-2262 | - 123 |
|  | 265 | 248-4841 | . . . . 99 | 268-2960 | . . . . . 107 | 301-8313 | -178 |
|  | 267 | 249-0096 | . . . . . . 185 | 269-2860 | . . . . . . 36 | -301-8313 | -197 |
|  | 269 |  | 187 | 269-2862 | . . . . . . 36 |  | 198 |
|  | 271 | 250-1424 | . . 115 | 269-2864 | . . . . . . 36 |  | 278 |
|  | 273 | 251-1005 | . . . 36 | 270-2679 | . . . . . . 169 | 301-8316 | 178 |
|  | 275 | 251-4314 | . . . . 34 | 272-0389 | - . . . . . . . 4 | -301-8316 | - +197 |
| 241-4620 | . 249 | 251-8101 | . . . . 286 | 272-1732 | . . . . . . 291 |  | $\begin{aligned} & 191 \\ & 198 \end{aligned}$ |
|  | 251 | $252-0619$ $252-0620$ | . . . . . . . 8 | $273-7623$ $274-4490$ | . . . . . . 45 | 301-8317 | . . 178 |
|  | 255 |  | 8 | 274-6717 | . . . . . . 188 |  | 183 |
|  | 257 | 252-0622 | . . . . . 2 | 274-6718 | . . . . . . 187 |  | $\begin{array}{r} 183 \\ \hline \quad 2 \end{array}$ |
|  | 259 |  | 106 | 274-6719 | . . . . . . 185 | 302-0575 | - 10 |
|  | 261 | 252-7802 | . . . . . 22 |  | 218 | 302-2202 | - 22 |
|  | 263 | 253-0608 | . 114 | 276-7222 | . . . . . . 44 | 302-2202 | - 23 |
|  | 265 |  | -121 | 276-8548 | . . . . . . 185 | 302-2224 | + 3 |
|  | 267 | 254-3943 | . . . . . 19 |  | 188 | 302-2224 | - 23 |
|  | 269 | 254-3944 | . . . . . 19 | 277-5662 | . . 238 | 303-1506 | . 115 |
|  | 271 | 255-9368 | . . . . . . 3 |  | 239 | $\begin{aligned} & 303-1506 \\ & 303-9449 \end{aligned}$ | . 115 |
|  | 273 |  | 121 | 277-9775 | . . . . . 19 | 304-8008 | - 70 |
|  | 275 | 256-6453 | . . . 192 | 278-8844 | . . . . . 196 | 304-8008 | - 79 |
| 241-4622 | . . 249 |  | 193 34 | 279-2252 | . . . . . . 62 | 306-5412 | . . 100 |
|  | 251 | 257-2015 | . . . 34 | 279-9828 | . . . . . . 189 | 306-9751 | . . . 25 |
|  | 253 | $258-8721$ $260-0251$ | . . . . 51 | 279-9829 | . . . . . 190 |  | - 26 |
|  | 257 | 260-0251 | -54 | 281-5882 | . . . . . . 72 | 307-2671 | . . . . . . 47 |
|  | 259 | 260-0915 | . . . . 51 | 283-2238 | . . . . . . 102 | 307-2673 | 99 32 |
|  | 261 | 260-6671 | . . . . 224 | 285-0823 | . . . . . . 10 | 307-2673 | - 48 |
|  | 263 |  | 225 | 287-3049 | . . . . . . 42 | 308-2085 | . 294 |
|  | 265 | 260-6685 | . . . . . 73 | 288-4548 | . . . . . . . 2 | 308-2902 | . 394 |
|  | 267 | 260-6883 | . . . . . . . 2 |  | 24 | 308-9776 | . 177 |
|  | 269 |  | 59 | 288-7324 | . . . . . . 168 | 308-9796 | . 177 |
|  | 271 | 260-7524 | . . 52 | 289-2498 | . . . . . . 26 | 313-3997 | . 12 |
|  | 273 |  | 53 | 289-5150 | . . . . . . 166 | 314-3055 | - 19 |
|  | 275 | 260-9221 | . . . . 67 | 290-3785 | . . . . . . . 301 | 314-3056 | - 19 |
| 241-4761 | . . . . 2 | 261-2293 | . . . . . 52 | 290-8568 | . . . . . . . . 4 | 314-3056 | - 19 |
|  | 99 | 261-2294 | - 52 | 291-2127 | . . . . . . 106 | 314-3058 | . 19 |
| 241-7601 | . . . . . ${ }^{\text {a }}$ 2 | 262-0489 | - 54 78 | 291-6905 | 107 85 | 314-3060 | . . . 19 |
| 242-1401 | . 54 | 262-0533 | . . . 76 | 292-0484 | . 44 | 314-3061 | - 19 |
| 242-1811 | . . 28 | 262-1554 | . . . . 145 | 292-1200 | . . . . . . 85 | 314-6905 | - . 227 |
| 242-2082 | . . . . . . . 109 |  | 147 | 293-3314 | . . . . . . 119 |  | 231 |
| 242-7418 | . 54 |  | 148 | 293-3315 | . . . . . 119 |  | 232 |
| 243-5220 | . . . . . 249 |  | 150 | 293-5977 | . . . . . . 67 |  | 235 |
|  | 251 |  | 151 | 293-5978 | . . . . . 67 |  | 242 |
|  | 253 |  | 152 | 293-9276 | . . . . . . . . 2 | 314-9098 | - . 199 |
|  | 255 | 262-4034 | . 192 |  | 56 | 315-9859 | - 32 |
|  | 257 |  | -107 | 293-9397 | . . . . . 14 |  | 105 |
|  | 259 | 262-4166 | . . . . . 2 | 293-9659 | . . . . . 301 | 316-0488 | - 76 |
|  | 261 |  | 49 | 294-6007 | . . . . . . 55 | 319-0270 | 57 |
|  | 263 | 263-0856 | . . . . . . . 169 | 295-8847 | . . . . . . . . 2 | 319-0271 | - 57 |





## PART NUMBER INDEX

| Part | Page | Part | Page | Part | Page | Part | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 578-4983 | . . 280 | 583-8356 | . . . . . . 118 |  |  |  |  |
| 578-6063 | . . . . . . . 280 | 583-8357 | . . . . . . . 118 |  |  |  |  |
| 578-7668 | . . . 76 | 583-8799 | . . . . . . 298 |  |  |  |  |
| 578-7680 | . . . 178 | 584-5008 | . . . . . . . ${ }^{\text {c }}$ |  |  |  |  |
| 578-7682 | . . 170 | 586-3077 | . . . . . . 299 |  |  |  |  |
|  | -178 | 586-3078 | . . . . . . ${ }^{\text {c }} 300$ |  |  |  |  |
| 578-9355 | . . . 173 | 586-4861 | . . . . . 167 |  |  |  |  |
| 579-0011 | . . . . . . +199 |  | $\begin{array}{r} 174 \\ -208 \end{array}$ |  |  |  |  |
| 579-1018 | . . . . . . 215 | 587-1466 | . . . . . . 291 |  |  |  |  |
| 579-1020 | . . 1278 | 587-1468 | . . . . . . ${ }^{\text {c }}$ 294 |  |  |  |  |
| 579-2544 | . . 157 | 588-6082 | . . . . . 217 |  |  |  |  |
| 579-2576 | . . . . . . 223 |  |  |  |  |  |  |
| 579-2577 | . . . . . . . 229 |  |  |  |  |  |  |
| 579-2578 | $\text { . . . . . } 228$ |  |  |  |  |  |  |
| 579-2579 | . . . . 228 |  |  |  |  |  |  |
|  | 233 |  |  |  |  |  |  |
| 579-2580 | . . . . . . 233 |  |  |  |  |  |  |
| 579-2581 | . . . . . . . 231 |  |  |  |  |  |  |
|  | 235 |  |  |  |  |  |  |
| 579-2582 | . . . . . . 232 |  |  |  |  |  |  |
| 579-2583 | . . . . . . . 235 |  |  |  |  |  |  |
| 579-2584 | . . . . . . . 231 |  |  |  |  |  |  |
|  | 232 |  |  |  |  |  |  |
| 579-2585 | . . . . . . ${ }^{\text {c }} 228$ |  |  |  |  |  |  |
| 579-2587 | . . . . ${ }^{\text {c }} 229$ |  |  |  |  |  |  |
| 579-2588 | . . . . . . 231 |  |  |  |  |  |  |
| 579-2915 | . . . . 182 |  |  |  |  |  |  |
| 579-3092 | . . . . . . . 182 |  |  |  |  |  |  |
| 580-1315 | . . . . . . 117 |  |  |  |  |  |  |
| 580-1906 | . . . . . . ${ }^{\text {c }} 208$ |  |  |  |  |  |  |
| 580-2204 | . . . . . . 232 |  |  |  |  |  |  |
| 580-2205 | . . . . . 179 |  |  |  |  |  |  |
| 580-2206 | . . . . . . ${ }^{\text {c }}$ |  |  |  |  |  |  |
| 580-2207 | . . . . ${ }^{\text {c }}$ |  |  |  |  |  |  |
| 580-2208 | . . . . . 194 |  |  |  |  |  |  |
| 580-2209 | . . . 142 |  |  |  |  |  |  |
| 580-2210 | . . . . . . ${ }^{\text {c }}$ |  |  |  |  |  |  |
| 580-2211 | . . . . 237 |  |  |  |  |  |  |
| 580-2212 | . . . . . . 238 |  |  |  |  |  |  |
| 580-2213 | . . . . . . . 239 |  |  |  |  |  |  |
| 580-2214 | . . . . . . 239 |  |  |  |  |  |  |
| 580-2215 | . . . . . . 241 |  |  |  |  |  |  |
| 580-2218 | . . . . ${ }^{\text {c }} 242$ |  |  |  |  |  |  |
| 580-2671 | . . . . . . 243 |  |  |  |  |  |  |
| 580-2672 | . . . . . . 243 |  |  |  |  |  |  |
| 580-2673 | . . . . . . 180 |  |  |  |  |  |  |
| $580-2678$ | . . . . . . . 180 |  |  |  |  |  |  |
| 580-3699 | $\text { . . . . . } 170$ |  |  |  |  |  |  |
| 580-4617 | . . . . . . 108 |  |  |  |  |  |  |
| 580-4620 | . . . . . . 109 |  |  |  |  |  |  |
| 580-5709 | . . . . . . 177 |  |  |  |  |  |  |
| 580-8182 | . . . . . . 118 |  |  |  |  |  |  |
| 580-8446 | . . . . . . . 278 |  |  |  |  |  |  |
| 580-9731 | . . . . . . . 280 |  |  |  |  |  |  |
| 581-0525 | . . . 209 |  |  |  |  |  |  |
| 581-0527 | . . . . . 211 |  |  |  |  |  |  |
| 581-0530 | . . . . . ${ }^{\text {d }} 212$ |  |  |  |  |  |  |
| 581-0536 | . . . . . . . 209 |  |  |  |  |  |  |
| 581-0537 | . . . . . . . 211 |  |  |  |  |  |  |
| 581-0785 | . . . . . . . 109 |  |  |  |  |  |  |
| 581-1930 | . . . . . . 183 |  |  |  |  |  |  |
| 581-1932 | . . . . . . . 183 |  |  |  |  |  |  |
| 581-6579 | . . . . . . . 109 |  |  |  |  |  |  |
| 581-6582 | . . . . . . 109 |  |  |  |  |  |  |
| 582-0555 | . . . . . . . 280 |  |  |  |  |  |  |
| 582-5233 | . . . . . . . 109 |  |  |  |  |  |  |
| 582-6199 | . . . . . . . 197 |  |  |  |  |  |  |
| 583-1732 | . . . . . . . 236 |  |  |  |  |  |  |
|  | 237 |  |  |  |  |  |  |
| 583-1866 | . . . . . . . 238 |  |  |  |  |  |  |
| 583-4816 | . . . . . 38 |  |  |  |  |  |  |

©2019 Caterpillar All Rights Reserved

CAT, CATERPILLAR, LET'S DO THE WORK, their respective logos, "Caterpillar Yellow", the "Power Edge" and Cat "Modern Hex" trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

# Special Instruction 

Procedure to Install and Operate Cat ${ }^{\circledR}$ GCCP 1.2/1.3 Control Panel on Certain Generator Sets

SMCS Code: 1609; 4490; 7451; 7490; 7566
Electric Power Generation
C1.1 DE9.5E3 (S/N: GB81-UP)
C1.5 DE13.5E3 (S/N: GB91-UP)
C3.3 DE33E0 (S/N: EC31-UP)
C3.3 DE33E3 (S/N: EC41-UP)
C3.3 DE50E0/DE5 (S/N: EC51-UP)
C3.3 DE50E2 (S/N: EC61-UP)
C3.3 GEN SET (S/N: H371-UP; RFF1UP; RFG1-UP)
C4.4 DE110E2 (S/N: ECL1-UP)
C4.4 DE55E2 (S/N: EC71-UP)
C4.4 DE65E3 (S/N: EC81-UP)
C4.4 DE88E0 (S/N: EC91-UP)
C4.4 DE88E3/DE1 (S/N: ECK1-UP)
C4.4 GEN SET (S/N: T921-UP; T931-UP; T941-UP; T951-UP; T961-UP; H381UP; RFJ1-UP; RFK1-UP; H3Z1-UP)
C7.1 DE200E0/DE (S/N: ECW1-UP)
C7.1 GEN SET (S/N: RD21-UP; RD31UP; T971-UP; T991-UP; RMT1-UP; T9T1-UP; T9W1-UP)
DE150E0 (S/N: GTY1-UP)
DE18E3/DE22E3 (S/N: GBY1-UP)
Generator Set
D1000 (S/N: GN71-UP)
D1250 (S/N: GN91-UP)
D20 (S/N: 2F21-UP)
D25 (S/N: 2F31-UP)
D250GC (S/N: RG31-UP)
D30 (S/N: 2F41-UP)

D300GC (S/N: RE31-UP)
D350GC (S/N: RG41-UP; S341-UP)
D400GC (S/N: RE41-UP; S441-UP)
D450GC (S/N: RG51-UP; S351-UP)
D500GC (S/N: RK51-UP; S651-UP)
D550GC (S/N: S371-UP)
D600 GC (S/N: S361-UP)
D800 (S/N: GNF1-UP)
DE1000S (S/N: GJS1-UP)
DE1100 (S/N: GGF1-UP; GGM1-UP; GGR1-UP; GGS1-UP)
DE1250 (S/N: GJT1-UP)
DE1250S (S/N: GJZ1-UP)
DE1400 (S/N: GJX1-UP)
DE1500 (S/N: GJY1-UP)
DE800S (S/N: GG61-UP; GGY1-UP)
Revision History:
Table 1

| Revision | Summary of Changes |
| :---: | :--- |
| 05 | Added effectivity. |
| 04 | Added effectivity. |
| 03 | Added effectivity. |
| 02 | Added effectivity. <br> Added content to Section "Cat GCCP 1.2 and <br> Cat GCCP 1.3 Modules" and Section "Cat <br> GCCP 1.3 Three Phase Four Wire" . <br> Added content to Table 8 . |
| 01 | Updated Illustration 24. |

## Table of Contents

Introduction ..... 3
Safety Section .....
Hazardous Voltage Information ..... 5
Specification ..... 6
Storage Temperature ..... 6
Operating Temperature ..... 6
Requirements for UL. ..... 6
Terminal Specification ..... 7
Power Supply Requirements ..... 7
Module Supply Instrumentation Display ..... 8
Voltage and Frequency Sensing ..... 8
Current Sensing .....  8
VA (Volt-Ampere) Rating of the CTs ..... 8
Example ..... 9
CT Polarity ..... 9
CT Phasing ..... 9
CT Class ..... 9
Inputs ..... 9
Digital Inputs ..... 9
Emergency Stop ..... 10
Analogue Inputs ..... 10
Analogue Input A ..... 10
Analogue Input B and C ..... 11
Analogue Input D ..... 11
Charge Fail Input ..... 12
Magnetic Pick-Up ..... 12
Outputs ..... 13
DC Outputs A and B (Fuel and Start) ..... 13
Configurable DC Inputs C, D, E, F, G, and H ..... 13
Communication Ports ..... 13
Communication Port Usage ..... 13
USB Slave Port (PC Configuration) ..... 13
RS485 Port ..... 14
Cable Specification ..... 14
RS485 Used for MODBUS Engine Connection ..... 15
Electronic Control Unit Port (ECU Port) (SAE J1939) ..... 15
SAE J1939-75 ..... 15
Cat ${ }^{\circledR}$ Expansion Modules ..... 16
DSENet Used for MODBUS Engine Connection ..... 16
Adding an External Sounder ..... 17
Accumulated Instrumentation ..... 19
Dimensions and Mounting ..... 20
Dimensions ..... 20
Panel Cutout ..... 20
Module Weight ..... 20
Fixing Clips ..... 21
Cable Tie Fixing Points ..... 21
Silicon Sealing Gasket ..... 22
Applicable Standards ..... 22
Enclosure Classifications ..... 23
IP Classifications ..... 23
NEMA Classification ..... 24
Installation Procedure ..... 24
User Connections ..... 24
Connection Description ..... 25
DC Supply, E-Stop Input, DC Outputs, and Charge Fail Input ..... 25
Analogue Sensor Inputs, MPU, and ECU ..... 26
DSE Net ..... 26
V1 (Generator), V2 (Mains) Voltage, and Frequency Sensing ..... 27
Current Transformers ..... 27
CT Connections ..... 27
Digital Inputs and RS485 Port ..... 28
USB Slave (PC Configuration) Connector ..... 28
Cat GCCP 1.2 Three Phase Four Wire ..... 29
Cat GCCP 1.3 Three Phase Four Wire ..... 31
Negative Earth ..... 32
Positive Earth ..... 32
Floating Earth ..... 32
Typical Arrangement of DSENet ..... 32
Description of Controls ..... 33
Cat GCCP 1.2 and Cat GCCP 1.3
Modules ..... 34
Control Push Buttons ..... 36
Viewing Instrument Pages ..... 37
Status ..... 37
Generator Locked Out ..... 38
Waiting for Generator ..... 38
Configurable Status Screens ..... 38
Engine ..... 38
Manual Fuel Pump Control ..... 39
DPF Regeneration Lamps ..... 39
Generator ..... 40
Expansion ..... 40
Charger ID ..... 40
Alarms ..... 41
ECU Alarms (CAN Fault Codes / Direct-to- Consumer (DTC)) ..... 42
Event Log ..... 42
Protections Disabled ..... 42
Serial Port ..... 43
RS485 Serial Port ..... 43
Connected to R485 MODBUS Master ..... 43
Configurable CAN ..... 43
About ..... 44
Operation ..... 44
Quickstart Guide for Module Operation ..... 44
Engine Starting ..... 44
Engine Stopping ..... 44
Stop/Reset Mode ..... 45
ECU Override ..... 45
Manual Mode ..... 45
Starting Sequence ..... 45
Engine Running ..... 45
Manual Breaker Control Disabled ..... 46
Manual Breaker Control Enabled ..... 46
Stopping Sequence ..... 46
Auto Mode ..... 47
Waiting in Auto Mode ..... 47
Starting Sequence ..... 47
Engine Running ..... 47
Scheduler ..... 47
Stop Mode ..... 48
Manual Mode ..... 48
Auto Mode ..... 48
Alternative Configuration ..... 48
Protections ..... 48
Alarms ..... 48
Protections Disabled ..... 49
Reset Electrical Trip ..... 49
ECU Alarms (CAN Fault Codes / DTC) ..... 50
Warning Alarms ..... 51
Electrical Trip Alarm ..... 55
Shutdown Alarms ..... 57
Maintenance Alarms ..... 61
Overcurrent Alarm ..... 63
Immediate Warning ..... 64
Inverse Definite Minimum Time Alarm (IDMT Alarm) ..... 64
Creating Spreadsheet for Over Current IDMT Curve ..... 65
Short Circuit IDMT Alarm ..... 66
Creating Spreadsheet for Short Circuit IDMT Curve ..... 67
Default Current Protection Tripping Characteristics ..... 68
Front Panel Configuration ..... 69
Main Configuration Editor ..... 69
Accessing Main Configuration Editor ..... 69
Entering Pin ..... 69
Editing Parameter ..... 69
Exiting Main Configuration Editor ..... 70
Adjustable Parameters ..... 70
Output Sources ..... 74
Running Configuration Editor ..... 77
Accessing Running Configuration Editor ..... 77
Entering PIN ..... 77
Editing Parameter ..... 77
Exiting Running Configuration Editor ..... 77
Running Editor Parameters ..... 77
Commissioning ..... 77
Basic Checks ..... 77
CAN Interface Specification (SAE J1939- 75) ..... 78
Instrumentation and Control ..... 78
Broadcast Messages SAE J1939-75. ..... 78
ACS-AC Switching Device Status ..... 79
PGN 64913 ..... 79
GC1 - Generator Control 1 ..... 79
PGN 64915 ..... 79
GAAC - Generator Average Basic AC Quantities ..... 79
PGN 65030 ..... 79
GPAAC - Generator Phase A Basic AC
Quantities ..... 80
PGN 65027 ..... 80
GPAACP - Generator Phase A AC Power ..... 80
PGN 65026 ..... 80
GPAACR - Generator Phase A AC Reactive Power ..... 80
PGN 65025 ..... 80
GPBACP - Generator Phase B AC Power ..... 81
PGN 65023 ..... 81
GPBACR - Generator Phase B AC Reactive Power ..... 81
PGN 65022 ..... 81
GPCAC - Generator Phase C Basic AC Quantities ..... 81
PGN 65021 ..... 81
GPCACP - Generator Phase C AC Power ..... 82
PGN 65020 ..... 82
GPCACR- Generator Phase C AC Reactive Power ..... 82
PGN 65019 ..... 82
GTACPP- Generator Total AC Percent Power ..... 82
PGN 64911 ..... 82
GTACE- Generator Total kW Hours Export ..... 83
PGN 65018 ..... 83
GTACER- Generator Total AC Reactive Energy ..... 83
PGN 64910 ..... 83
GTACP- Generator Total AC Power ..... 83
PGN 65029 ..... 83
GTACR- Generator Total AC Power ..... 83
PGN 65028 ..... 83
Broadcast Messages Engine Instrumentation ..... 84
Dash Display (DD) ..... 84
PGN 65276 ..... 84
EC2- Engine Configuration 2 ..... 84
PGN 64895 ..... 84
EEC1- Engine Speed ..... 84
PGN 61444 ..... 84
EEC4- Crank Attempt Count on Present Start Attempt. ..... 85
PGN 65214 ..... 85
EFL_P1 - Oil Pressure ..... 85
PGN 65263 ..... 85
EOI - Emergency Stop ..... 85
PGN 64914 ..... 85
ET1 - Coolant Temperature ..... 86
PGN 65262 ..... 86
Hours - Engine Hour Revolutions ..... 86
PGN 65253 ..... 86
VEP1 - Vehicle Electrical Power ..... 86
PGN 65271 ..... 86
DM01 - Conditions Active Diagnostic
Trouble Codes ..... 86
PGN65226 ..... 87
DM1 Conditions ..... 87
Fault Finding ..... 88
Starting ..... 88
Loading ..... 89
Alarms ..... 89
Communications ..... 89
Instruments ..... 90
Glossary of Terms ..... 90

## Introduction

This Special Instruction contains the procedure to install and operate Cat ${ }^{\oplus}$ GCCP 1.2/1.3 Control Panel on certain generator sets.

Cat GCCP 1.2/1.3 Control Panel provides different functionality across a common platform. The functionality provides greater flexibility in choosing the controls for the generator set.

Cat GCCP 1.2/1.3 Control Panel allows the operator to start and stop the generator set, and transfer load to the generator set either manually or automatically.

The user can view system operating parameters via the text Liquid Crystal Display (LCD). Cat GCCP $1.2 /$ 1.3 Control Panel monitors the engine and indicates the operational status and fault conditions. The control panel helps to shut down automatically the engine and displays the fault condition through LCD display.

The Advanced RISC Machines microprocessor (ARM microprocessor) in the module incorporates the following complex features:

- Text-based LCD display
- True Root Mean Square Voltage (RMS Voltage)
- Current and Power monitoring
- Universal Serial Bus (USB) and RS485 Communications
- Engine parameter monitoring
- Fully configurable inputs for use as alarms or a range of different functions
- Engine Electronic Control Module interface (ECU interface) to electronic engines including Tier 5 engines
- Integral Programmable Logic Controller (PLC) to help provide customization where required
- Fuel tank level monitoring to track fuel filling operations and detect fuel leak/theft
- Data Logging

Cat GCCP 1.2/1.3 Configuration Suite Software allows alteration of selected operational sequences, timers, and alarms. The integral front panel configuration editor of the module is used to adjust the values.

A security code can protect access to critical operational sequences and timers for use by qualified engineers.

The module is housed on a robust plastic case suitable for panel mounting. Connections to the module are via locking plug and sockets.

Do not perform any procedure in this Special Instruction until you have read the information and you understand the information.

## Safety Section

Do not perform any procedure in this Special Instruction until you have read this Special Instruction and you understand this information. Use only proper tools and observe all precautions that pertain to the use of those tools. Failure to follow these procedures can result in personal injury. The following procedures should be observed.

Work safely. Most accidents that involve product operation, maintenance, and repair are caused by failure to observe basic safety rules or precautions. An accident can often be avoided by recognizing potentially hazardous situations before an accident occurs.

A person must be alert to potential hazards. This person must also have the necessary training, skills, and tools to perform these functions properly.
Safety precautions and warnings are provided in this instruction and on the product. If these hazard warnings are not heeded, bodily injury or death could occur to you or to other persons. Caterpillar cannot anticipate every possible circumstance of a potential hazard.

Therefore, the warnings in this publication and the warnings that are on the product are not all inclusive. Avoid using a tool, a procedure, a work method, or operating technique that is not recommended by Caterpillar.
Ensure that the product will not be damaged or the product will be made unsafe by the operation, lubrication, maintenance, or the repair procedures.

## WARNING

Do not operate or work on this product unless you have read and understood the instructions and warnings in the relevant Operation and Maintenance Manuals and relevant service literature. Failure to follow the instructions or heed the warnings could result in injury or death. Proper care is your responsibility.

## WARNING

When removing a major component or attachment, ensure that it is properly blocked or secured before removing mounting hardware. An assembly that is disconnected without proper blocking could shift or fall, resulting in serious injury or death of personnel or machine damage.

## WARNING

Accidental engine starting can cause injury or death to personnel working on the equipment.

To avoid accidental engine starting and to bring the equipment to a zero energy state, disconnect all positive ( + ) and negative ( - ) battery cables. Install an appropriate battery cable lockout device and protect the battery posts to prevent accidental contact and shorting.

Place a Do Not Operate tag at the Start/Stop switch location to inform personnel that the equipment is being serviced.


Illustration 1
g06276183

## WARNING

Never disconnect any charging unit circuit or battery circuit cable from the battery when the charging unit is operated. A spark can cause an explosion from the flammable vapor mixture of hydrogen and oxygen that is released from the electrolyte through the battery outlets. Injury to personnel can be the result.

## Hazardous Voltage Information

## ! D DANGER

ELECTROCUTION HAZARD - The electrical system contains hazardous voltage levels.

DO NOT remove any covers that will expose energized hazardous-voltage electrical components without shutting down and discharging the electrical system.

DO NOT perform any maintenance on the electrical system until after the electrical system has been shut down and the voltage has been discharged by qualified personnel.

Read and understand the instructions and warnings found in the Operation and Maintenance Manual to properly shut down the electrical system and discharge hazardous-voltage electrical components.

Failure to follow these instructions will result in personal injury or death.

## DANGER

ELECTROCUTION HAZARD - Ensure proper grounding.

Avoid a buildup of hazardous live voltages on exposed surfaces by ensuring that all grounding wires/straps are always properly connected.

Disconnected grounding wires, including grounding wires/straps for hazardous-voltage components and electrical enclosures, must be properly reconnected before connecting equipment to the power supply.

Failure to follow these instructions will result in personal injury or death.

## WARNING

When service or maintenance must be performed in a hazardous-voltage component enclosure, always assume that a hazardous voltage level could be present.

Qualified personnel should manually check for hazardous voltage using electrical measuring tools that have the capacity to measure the haz-ardous-voltage components being checked.

The voltage level present must be confirmed to be below 50 Volts before any exposure to the hazard-ous-voltage components can take place.

Failure to follow these instructions could result in personal injury or death.

There may be government regulations, local regulations, or site-specific rules that govern the operation, service, and maintenance of high-voltage components and machines. Comply with applicable rules and regulations for the work place.

Appropriate high-voltage protective equipment should be worn as defined by local rules and regulations.

Only qualified service personnel should perform service on high-voltage systems.

DO NOT remove covers, or open enclosures, that will expose energized high-voltage electrical components.

DO NOT perform service or maintenance on energized high-voltage electrical components.

High voltage can cause electrocution resulting in personal injury or death.

High-voltage components and connections must be properly maintained.

Refer to the Maintenance Section in the Operation and Maintenance Manual for additional information.

Residual energy can remain in high-voltage components even after operation has stopped. Always assume that a hazardous level of voltage could be present.

Before performing any type of service, repair, or maintenance on high-voltage electrical components, perform the following:

- Disconnect the electrical power source
- Isolate electrical components
- Discharge residual energy
- Check components for voltage using electrical measuring tools.

Note: Use electrical measuring tools that have the capacity to measure the high-voltage components being checked. The level of voltage present must be confirmed to be below 50 Volts before any exposure to the high-voltage components can take place.

Read and understand the instructions and warnings found in Operation and Maintenance Manual, "Electrical Shutdown and Voltage Discharge", to shut down the electrical system and discharge highvoltage electrical components.

## Specification

## Storage Temperature

The storage temperature of the module is given in Table 2 :
Table 2

| Module | Specification |
| :---: | :---: |
| Cat GCCP $1.2 / 1.3$ | $-40^{\circ}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$ |

## Operating Temperature

The operating temperature of the module is given in Table 3 :
Table 3

| Module | Specification |
| :---: | :---: |
| Cat GCCP $1.2 / 1.3$ | $-30^{\circ}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |

## Requirements for UL

Note: UL is a trademark owned by UL LLC.
Note: If more than one live circuit exists, refer to Section "Cat GCCP 1.2 Three Phase Four Wire, and Cat".

Suggested installation specifications to meet UL compliance is given Table 4 :

Table 4

| Description |  |
| :---: | :--- |
| Screw Terminal Tightening Torque | $0.5 \mathrm{~N} \cdot \mathrm{~m}(4.42 \mathrm{lb}$ in) |
|  | Terminals suitable for connection of conductor size AWG $20\left(0.5 \mathrm{~mm}{ }^{2}\right)$ to AWG $13\left(2.5 \mathrm{~mm} \mathrm{~m}^{2}\right)$. <br> Conductor protection must be provided in accordance with NFPA 70 , Article 240. <br> Low voltage circuits ( 35 V or less) must be supplied from the engine starting battery or an isolated sec- <br> ondary circuit. <br> Separate and secure the communication, sensor, and battery derived circuit conductors. Maintain a <br> minimum of $6 \mathrm{~mm}(0.2$ inch) distance from the generator and mains connected circuit conductors, un- <br> less all conductors are rated 600 V or greater. |
| Current Inputs | Inputs must be connected through UL listed or recognized isolating Current Transformers (CTs) with a <br> maximum secondary rating of 5 A. |
| Communication Circuits | Circuits must be connected to communication circuits of UL listed equipment. |
| Output Pilot Duty | 0.5 A |
| Mounting | Suitable for use in type-one enclosure type rating with a surrounding air temperature between <br> $-30^{\circ}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$. <br> Suitable for pollution degree three environments when voltage sensing inputs do not exceed 300 V. <br> To maintain a pollution degree two environment, install the device in an unventilated or filtered ventila- <br> tion enclosure when used to monitor voltages over 300 V. |
| Operating Temperature | $-30^{\circ}$ to $70^{\circ} \mathrm{C}\left(-22^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | $-40^{\circ}$ to $80^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ |

## Terminal Specification



## Illustration 2

g06528527
Cable Entry and Screw Terminals of a 10 Way Connector
Terminal specification of 10 Way Connector is given in Table 5 :
Table 5

| Description | Specification |
| :---: | :--- |
| Connection <br> Type | Two part connector <br> Male part fitted to module. <br> Female part supplied in module packing case <br> - Screw terminal, rising clamp, no internal <br> spring. |
| Minimum Ca- <br> ble Size | AWG $20\left(0.5 \mathrm{~mm}^{2}\right)$ |
| Maximum Ca- <br> ble Size | AWG $13\left(2.5 \mathrm{~mm}^{2}\right)$ |

(Table 5, contd)

| Description | Specification |
| :---: | :---: |
| Tightening <br> Torque | $0.5 \mathrm{~N} \cdot \mathrm{~m}(4.42 \mathrm{lb}$ in $)$ |
| Wire Strip <br> Length | $7 \mathrm{~mm}(0.3$ inch $)$ |

(1) Refer to Illustration 2 for cable entry and screw terminals of a 10 way connector.

## Power Supply Requirements

The power supply requirement details are given in Table 6 :
Table 6

| Description | Specification |
| :---: | :--- |
| Minimum Sup- <br> ply Voltage | 8 V continuous, 5 V for up to 1 minute. |
| Cranking <br> Dropouts | Survives 0 V for 100 ms when the supply is <br> greater than 10 V before the dropout. Recov- <br> ers to 5 V after sometime. |
| Maximum Sup- <br> ply Voltage | 35 V continuous ( 60 V for 1 minute) |
| Reverse Polar- <br> ity Protection | -35 V continuous |
| Maximum Op- <br> erating Current | 280 mA at 12 V <br> 150 mA at 24 V |
| Maximum <br> Standby <br> Current | 145 mA at 12 V |
| 85 mA at 24 V |  |

(Table 6, contd)

| Description | Specification |
| :---: | :--- |
| Maximum Cur- <br> rent When In <br> Sleep Mode | 70 mA at 12 V <br> 40 mA at 24 V <br> Typical Power <br> (Controller ON, <br> Heater OFF) <br> Typical Power <br> (Controller ON, <br> Heater ON)$\quad 6.5 \mathrm{~W}$ |

## Module Supply Instrumentation Display

The module supply instrumentation display specification is given in Table 7 :
Table 7

| Description | Specification |
| :---: | :--- |
| Range | 0 V to $70 \mathrm{~V} \mathrm{DC} \mathrm{(maximum} \mathrm{continuous} \mathrm{oper-}$ <br> ating voltage of 35 V DC) |
| Resolution | 0.1 V |
| Accuracy | $1 \%$ full scale $(35 \mathrm{~V})$ |

## Voltage and Frequency Sensing

The voltage and frequency sensing specification is given in Table 8 :
Table 8

| Description | Specification |
| :---: | :--- |
| Measurement <br> Type | True RMS conversion |
| Sample Rate | 40 kHz |
| Harmonics | Up to 11 ${ }^{\text {th }}$ grade or more. |
| Input <br> Impedance | $450 \mathrm{k} \Omega$ phase to neutral. |
| Phase to <br> Neutral | 15 V (minimum requirement for sensing fre- <br> quency) to 415 $\mathrm{V} \mathrm{AC} \mathrm{(absolute} \mathrm{maximum)}$ <br> Suitable for 345 VAC nominal ( $\pm 20 \%$ for <br> under/overvoltage detection) |
| Phase to Phase | 25 V (minimum required for sensing fre- <br> quency) to $720 \mathrm{~V} \mathrm{AC} \mathrm{(absolute} \mathrm{maximum)}$ <br> Suitable for 600 V AC nominal ( $\pm 20 \%$ for <br> under/overvoltage detection) |
| Common Mode <br> Offset from <br> Earth | $100 \mathrm{~V} \mathrm{AC} \mathrm{(max)}$ <br> Resolution1 V AC phase to neutral <br> 2 VAC phase to phase |
| Accuracy | $\pm 1 \%$ full scale phase to neutral <br> $\pm 1 \%$ full scale phase to phase |

(continued)
(Table 8, contd)

| Description | Specification |
| :---: | :--- |
| Minimum <br> Frequency | 3.5 Hz |
| Maximum <br> Frequency | 75.0 Hz |
| Frequency <br> Resolution | 0.1 Hz |
| Frequency <br> Accuracy | $\pm 0.2 \mathrm{~Hz}$ |

## Current Sensing

The current sensing specification is given in Table 9 :
Table 9

| Description | Specification |
| :---: | :--- |
| Measurement Type | True RMS conversion |
| Sample Rate | 40 Hz |
| Harmonics | Up to 11 ${ }^{\text {th }}$ harmonics or more |
| Nominal Current <br> Transformer (CT) <br> Secondary Rating | 5 A |
| Maximum Continu- <br> ous Current |  |
| Overload <br> Measurement | 15 A |
| Absolute Maximum <br> Overload | 50 A for 1 second |
| Burden | 0.5 VA (0.02 R burden resistors) |
| Common Mode <br> Offset | $\pm 1 \mathrm{~V}$ peak plant ground to Current Trans- <br> former (CT) common terminal |
| Resolution | 25 mA |
| Accuracy | $\pm 1 \%$ of nominal (excluding CTerror) |

## VA (Volt-Ampere) Rating of the CTs

Note: Details for $4 \mathrm{~mm}^{2}$ cables are given for reference only. Connectors on Cat GCCP 1.2/1.3 control panel are only suitable for cables up to $2.5 \mathrm{~mm}^{2}$

The VA burden of the module on the CTs is 0.5 VA . Depending upon the type and length of cable between the CT and the module, CTs with a greater VA rating than the module might be required.

Distance between CTs and the measuring module should be estimated and cross-referenced against the cable size chart to find the VA burden of the cable.

If the CTs are fitted within the alternator top box, connect the star point (common) of the CTs to system ground (Earth) closer to the CTs. Closer connections minimize the length of cable used to connect the CTs to Cat GCCP 1.2/1.3 control panel.

## Example



Illustration 3
g06528528
Cable Size
If a $1.5 \mathrm{~mm}^{2}$ cable is used and the distance between CT and measuring module is 20.0 m ( 65.62 ft ), VA burden of the cable would approximately be 15 VA . As VA burden of Cat GCCP 1.2/1.3 controller is 0.5 VA, use a CT with rating of at least 15.5 VA ( $15 \mathrm{VA}+$ $0.5 \mathrm{VA})$.

If $2.5 \mathrm{~mm}^{2}$ cables are used over the same distance as the $1.5 \mathrm{~mm}^{2}$, the VA burden of the cable on the CT would be approximately 7 VA . CTs required for this instance are at least 7.5 VA ( $7 \mathrm{VA}+0.5 \mathrm{VA}$ ).

Graphical representation of the distance between CT and the measuring module against VA burden of the cable, along with the cable size is given in Illustration 3.

## CT Polarity



Illustration 4
Polarity of CT Primary
(1) Side facing Generator (Labeled as p 1 , k , or K)
(2) Side facing Load (Labeled as p2, I, or L)

Note: Ensure correct polarity of the CT primary.

Incorrect CT orientation would lead to negative kW readings when the set is supplying power. Use labeling in the casing as an indicator of orientation, if available.

To test the orientation, run the generator in parallel mode and load the generator to around $10 \%$ of the set rating. Do not run the generator in parallel with any other supply while testing the orientation. Ensure that Cat GCCP 1.2/1.3 control panel shows positive kW for all three individual phase readings. Illustration 4 shows the polarity of CT primary.

## CT Phasing

Ensure that the CTs are connected to the correct phases. For example, CTon phase 1 should be connected to the terminal on Cat GCCP 1.2/1.3 control panel intended for the CT Phase 1 connection.

Ensure that voltage sensing for phase 1 is connected to generator phase 1. Incorrect connection of phases results in incorrect power factor measurements, which in turn results in incorrect kW measurements.

Use a single-phase load to check for incorrect connection. Place the load on each phase, run the generator, and ensure that the kW value appears in the correct phase. For example, if the load is connected to phase 3, ensure that the kW figure appears on phase 3 display. The kW figure must not appear on phase 1 or phase 2 display.

## CT Class

Ensure that the correct CT type is chosen. For instance, if Cat GCCP 1.2/1.3 control panel provides overcurrent protection, ensure that the CT could measure the overload level required to protect against, and accurately.

Fit a protection class CT (P15 type) to maintain high accuracy while the CT is measuring overload currents.

If Cat GCCP 1.2/1.3 control panel uses CT for instrumentation only (current protection disabled or not fitted to the controller), measurement class CTs can be used. Consider the level of accuracy that is required for your application. Cat GCCP 1.2/1.3 control panel is accurate to more than $1 \%$ of the fullscale current reading. To maintain the level of accuracy, a class 0.5 or class 1 CT must be used.

## Inputs

## Digital Inputs

The digital input specification is given in Table 10 :

Table 10

| Descrip- <br> tion | Specification |
| :---: | :--- |
| Number | Eight configurable digital inputs (12 inputs in <br> case if the "Analogue Inputs" are configured as <br> digital inputs). |
| Arrangement | Contact between terminal and ground |
| Low-Level <br> Threshold | 2.1 V minimum |
| High-Level <br> Threshold | 6.6 V maximum |
| Maximum In- <br> put Voltage | +60 V DC for plant supply negative |
| Minimum In- <br> put Voltage | -24 V DC for plant supply negative |
| Contact Wet- <br> ting Current | 5 mA typical |
| Open Circuit |  |
| Voltage |  |$\quad 12 \mathrm{~V}$ typical 

## Emergency Stop

The emergency stop specification is given in Table 11 :
Table 11

| Descrip- <br> tion | Specification |
| :---: | :--- |
| Arrangement | Contact between terminal and module supply <br> positive |
| Closed <br> Threshold | 5 V minimum |
| Open <br> Threshold | 5 V maximum |
| Maximum In- <br> put Voltage | +35 V DC for plant supply negative $(60 \mathrm{~V}$ pro- <br> tection for 1 minute $)$ |
| Minimum In- <br> put Voltage | -24 V DC for plant supply negative |
| Open Circuit |  |
| Voltage |  | $\mathrm{0V} \quad$

## Analogue Inputs

All analogue inputs are flexible within Cat GCCP $1.2 /$ 1.3 modules.

## Analogue Input A

Table 12

| Descrip- <br> tion | Specification |
| :---: | :--- |
| Input Type | Flexible: Configured for Oil Sensor in Cat GCCP <br> $1.2 / 1.3$ default configuration <br> Flexible Options: Not Used, Digital Input, Flexi- <br> ble Analogue Oil Sensor, and Temperature <br> Sensor |
| Flexible Input <br> Selection | Pressure Sensor, Percentage Sensor, or Tem- <br> perature Sensor |
| Flexible <br> Measured <br> Quantity | Current, Resistive, or Voltage |

The resistive configuration specification is given in Table 13 :
Table 13

| Resistive Configuration |  |
| :---: | :--- |
| Descrip- <br> tion | Specification |
| Measure- <br> ment Type | Resistance measurement by measuring voltage <br> across sensor with a fixed current applied. |
| Arrangement | Differential resistance measurement input |
| Measure- <br> ment Current | $15 \pm 2 \mathrm{~mA}$ |
| Full Scale | $240 \Omega$ |
| Over Range / <br> Fail | $350 \Omega$ |
| Resolution | $\pm 1 \%$ of full scale |
| Accuracy | $\pm 2 \%$ of full scale resistance $( \pm 9.6 \Omega)$ excluding <br> sensor error |
| Maximum <br> Common <br> Mode <br> Voltage | $\pm 2 \mathrm{~V}$ |
| Display <br> Range | Configurable by Personal Computer software <br> $($ (PC software) |

Table 14

| 0 V to 10 V Configuration |  |
| :---: | :--- |
| Descrip- <br> tion | Specification |
| Full Scale | 0 V to 10 V |
| Over Range $/$ <br> Fail | 11 V |
| Resolution | $\pm 1 \%$ of full scale |
| Accuracy | $\pm 2 \%$ of full scale voltage $\pm 0.2 \mathrm{~V}$ excluding sen- <br> sor error |

(Table 14, contd)

| 0 V to 10 V Configuration |  |
| :---: | :---: |
| Descrip- <br> tion | Specification |
| Maximum <br> Common <br> Mode <br> Voltage | $\pm 2 \mathrm{~V}$ |
| Display <br> Range | Configurable by PC software |

Table 15

| 4 mA to 20 mA Configuration |  |
| :---: | :--- |
| Descrip- <br> tion | Specification |
| Full Scale | 0 mA to 20 mA |
| Over Range $/$ <br> Fail | 22 mA |
| Resolution | $\pm 1 \%$ of full scale |
| Accuracy | $\pm 2 \%$ of full scale current $\pm 0.4 \mathrm{~mA}$ excluding sen- <br> sor error |
| Maximum <br> Common <br> Mode <br> Voltage | $\pm 2 \mathrm{~V}$ |
| Display <br> Range | Configurable by PC software |

## Analogue Input B and C

Table 16

| Descrip- <br> tion | Specification |
| :---: | :--- |
| Analogue In- <br> put B Type | Flexible: Configured for Temperature Sensor in <br> Cat GCCP 1.2/1.3 default configuration <br> Not used, Digital Input, Flexible Analogue, Fuel <br> Sensor, and Temperature Sensor |
| Analogue In- <br> put C Type | Flexible: Configured for Fuel Sensor in Cat <br> GCCP 1.2/1.3 default configuration <br> Flexible Options: Not used, Digital Input, Flexi- <br> ble Analogue, Fuel Sensor, and Temperature <br> Sensor |
| Flexible Input <br> Selection | Flexible Input Selection, Pressure Sensor, Per- <br> centage Sensor, or Temperature Sensor |
| Flexible <br> Measured <br> Quantity | Resistive only |

Table 17

| Resistive Configuration |  |
| :---: | :--- |
| Descrip- <br> tion | Specification |
| Measure- <br> ment Type | Resistance is measured by measuring voltage <br> across the sensor with a fixed current applied. |
| Arrangement | Differential resistance measurement input |
| Measure- <br> ment Current | $13 \pm 10 \mathrm{~mA}$ |
| Full Scale | $3 \mathrm{k} \Omega$ |
| Over Range / <br> Fail | $5 \mathrm{k} \Omega$ |
| Resolution | $\pm 1 \%$ of full scale |
| Accuracy | $\pm 2 \%$ of full scale resistance excluding sensor <br> error |
| Maximum <br> Common <br> Mode <br> Voltage | $\pm 2 \mathrm{~V}$ |
| Display <br> Range | Configurable by PC software |

## Analogue Input D

Table 18

| Descrip- <br> tion | Specification |
| :---: | :--- |
| Analogue In- | Flexible: Configured for Temperature Sensor in <br> put D Type <br> Cat GCCP 1.2/1.3 default configuration <br> Flexible Options: Not Used, Digital Input, Flexi- <br> ble Analogue, Fuel Sensor, and Temperature <br> Sensor |
| Flexible Input <br> Selection | Pressure Sensor, Percentage Sensor, or Tem- <br> perature Sensor |
| Flexible <br> Measured <br> Quantity | Current, Resistive, or Voltage |

Table 19

(Table 19, contd)

| Resistive Configuration |  |
| :---: | :---: |
| Descrip- <br> tion | Specification |
| Accuracy | $\pm 2 \%$ of full scale resistance $( \pm 9.6 \Omega)$ excluding <br> sensor error |
| Maximum <br> Common <br> Mode <br> Voltage | $\pm 2 \mathrm{~V}$ |
| Display <br> Range | Configurable by PC software |

Table 20

| 0 V to 10 V Configuration |  |
| :---: | :--- |
| Descrip- <br> tion | Specification |
| Full Scale | 0 V to 10 V |
| Over Range <br> Fail | 11 V |
| Resolution | $\pm 1 \%$ of full scale |
| Accuracy | $\pm 2 \%$ of full scale voltage ( $\pm 0.2 \mathrm{~V}$ ) excluding sen- <br> sor error |
| Maximum <br> Common <br> Mode <br> Voltage | $\pm 2 \mathrm{~V}$ |
| Display <br> Range | Configurable by PC software |

Table 21

| 4 mA to 20 mA Configuration |  |
| :---: | :--- |
| Descrip- <br> tion | Specification |
| Full Scale | 0 mA to 20 mA |
| Over Range <br> Fail | 22 mA |
| Resolution | $1 \%$ of full scale |
| Accuracy | $\pm 2 \%$ of full scale current $( \pm 0.4 \mathrm{~mA})$ excluding <br> sensor error |
| Maximum <br> Common <br> Mode <br> Voltage | $\pm 2 \mathrm{~V}$ |
| Display <br> Range | Configurable by PC software |

## Charge Fail Input

Charge Fail Input is a combined input and output. The terminal provides excitation current to charge the alternator field winding when the generator is required to run. Voltage of the terminal is close to the plant battery supply voltage when the charge alternator is correctly charging the battery.

In a failed charge situation, the voltage of the terminal drops down to low voltage. The drop in voltage triggers the "Charge Failure" alarm. The level at which the alarm operates and triggers a warning or shutdown alarm is configurable using Cat GCCP $1.2 /$ 1.3 Configuration Suite Software.

Table 22

| Descrip- <br> tion | Specification |
| :---: | :--- |
| Minimum <br> Voltage | 0 V |
| Maximum <br> Voltage | 35 V |
| Resolution | 0.2 V |
| Accuracy | $\pm 1 \%$ of full scale |
| Excitation | Active circuit constant power output |
| Output <br> Power | 2.5 W nominal at 12 V and 24 V |
| Current at <br> 12 V | 210 mA |
| Current at <br> 24 V | 105 mA |

## Magnetic Pick-Up

Requirements for Magnetic Pickup devices (MPU devices) when used with Cat GCCP 1.2/1.3 control panel is given in Table 23.
Table 23

| Description | Specification |
| :---: | :--- |
| Type | Differential input |
| Minimum Voltage | 0.5 V RMS |
| Maximum Voltage | 60 V RMS |
| Max Common Mode Voltage | $\pm 2 \mathrm{~V}$ peak |
| Minimum Frequency | 5 Hz |
| Maximum Frequency | $10,000 \mathrm{~Hz}$ |
| Resolution | 6.25 rpm |
| Accuracy | $\pm 25 \mathrm{rpm}$ |
| Flywheel Teeth | 10 to 500 |

## Outputs

DC Outputs A and B (Fuel and Start)
Table 24

| Descrip- <br> tion | Specification |
| :---: | :--- |
| Type | Normally used as Fuel and Start outputs. <br> Fully configurable for other purposes if the mod- <br> ule is configured to control an electronic engine, <br> supplied from DC supply terminal 2. |
| Rating | 10 A resistive for 10 seconds, 5 A resistance <br> continuous at module supply |

Configurable DC Inputs C, D, E, F, G, and H
Table 25

| Descrip- <br> tion | Specification |
| :---: | :--- |
| Type | Fully configurable, supplied from DC supply ter- <br> minal 2 |
| Rating | 2 A resistive at module supply |

## Communication Ports

Note: All communication ports can be used at the same time.

Table 26

| Descrip- <br> tion | Specification |
| :---: | :--- |
| Universal Se- <br> rial Bus port <br> (USB port) | Type B USB 2.0 <br> For connection to PC running Cat GCCP 1.2/ <br> 1.3 Configuration Suite Software. Maximum dis- <br> tance is $5 \mathrm{~m} \mathrm{(16.4} \mathrm{ft)}$ |
|  | Isolated port <br> Data connection 2 wire + common Half Duplex <br> Data direction control for Transmit (by software <br> protocol) <br> Baud Rate 115.2 baud subject to configuration <br> External termination required (120 $\Omega$ ) <br> RS485 Serial <br> Ports <br> (on board common mode offset voltage is 56 V <br> tance 1.2 km (0.75 miles) |
| ECU Port Maximum dis- |  |

(continued)
(Table 26, contd)

| Descrip- <br> tion | Specification |
| :---: | :--- |
|  | Non-isolated |
| Cat ${ }^{\ominus}$ (Expan- <br> sion Comms) <br> Port | Data connection 2 wire + common Half Duplex <br> protocol). |
| Maximum Baud Rate of 115 Kbaud internal ter- <br> mination fitted (120 $\Omega$ ) |  |
| Max common mode offset $\pm 5 \mathrm{~V}$ maximum dis- <br> tance $1.2 \mathrm{~km}(0.75$ miles) $)$ |  |

## Communication Port Usage

## USB Slave Port (PC Configuration)

Note: DC supply must be connected to the module for PC configuration.

A USB port is provided to give a simple means of connection between a PC and the controller. The operator can perform the following actions using Cat GCCP 1.2/1.3 Configuration Suite Software:

- Control the module
- Start or stop the engine
- Select operating modes
- Activate various other functions

Various operating parameters such as coolant temperature and oil pressure, of the engine are available to be viewed or changed.



USB Cable Type A to Type B
Items shown in Illustrations 5, 6, and 7 are required to connect the module to the PC using a USB. The cable shown in Illustration 7 is the same cable often used to connect a PC to a printer.

## RS485 Port

Note: For a single module for PC connection and distances up to 6 m ( 19.7 ft ), USB connection method is more suitable and lower-cost alternative to RS485. RS485 cable is more suited for longer distance connections.

RS485 port on the controller supports MODBUS Remote Terminal Unit protocol (RTU protocol) and connects to a single MODBUS master device only.

Cat GCCP 1.2/1.3 MODBUS register table for the controller is available upon request from the authorized Cat Dealer.

RS485 is used for point-to-point cable connection of more than one device (maximum 32 devices), and for connections to PCs, PLCs, and Building Management Systems.

The long-distance specification ( 1.2 km ( 0.75 miles)) of RS485 interface is an advantage when using BELDEN 9841 (or equivalent) cable. The longdistance specification allows large distance between the module and a PC running Cat GCCP 1.2/1.3 Configuration Suite software.

Note: BELDEN is a trademark owned by BELDEN INC.

The operator can control the module, starting, or stopping the engine, selecting operating modes, and so on. The various operating parameters such as coolant temperature and oil pressure of the remote engine can be viewed or changed.

Many PCs may not have an internal RS485 serial port. Caterpillar DOES NOT recommend the use of USB for RS485 convertors but does recommend PC add-ons add an RS485 port to the computer.

## Cable Specification

Note: Cat GCCP 1.2/1.3 utilizes BELDEN 9841 (or equivalent) cable for RS485 communication. The cable is rated to a maximum length of 1.2 km ( 0.75 miles).

Table 27

| Description | Specification |
| :---: | :--- |
| Cable Type | Two core screened and shielded twisted pair |
| Cable Charac- <br> teristics | $120 \Omega$ impedance <br> Low capacitance |
| Recommend- <br> ed Cable | BELDEN 9841 <br> BELDEN 9271 |
| Maximum Ca- <br> ble Length | 1.2 km (0.75 miles) when using BELDEN <br> 9841 or direct equivalent <br> 600 m (656.4 yd) when using BELDEN 9271 <br> or direct equivalent |
| RS485 <br> Topology | "Daisy Chain" bus with no stubs (spurs). |
| RS485 <br> Termination | $120 \Omega$ <br> Not fitted internally to module <br> Must be fitted externally to the "first" and "last" <br> device on RS485 link. |

## RS485 Used for MODBUS Engine Connection

| ECU (ECM) Options |  |
| :--- | :--- |
| Engine Type | CAT C9 |
| Enhanced J1939 | $\boxed{\square}$ |
| Alternative Engine Speed | $\square$ |
| Modbus Engine Comms Port | RS485Port |

## Illustration 8

g06528694
RS485
RS485 port can be configured for connection to units equipped with MODBUS capable controllers. The connection leaves DSENet interface free for connection to expansion devices.

Note: DSENet is a trademark of Deep Sea Electronics Inc.

Note: RS485 interface is no longer an available connection for remote monitoring equipment (Building Management System, PLC, or PC RS232 port), or dual mutual system.

An example of configuring DSENet for connection to Genset using Cat GCCP 1.2/1.3 Configuration Suite Software is shown in Illustration 8.

## Electronic Control Unit Port (ECU Port) (SAE J1939)

Note: A screened $120 \Omega$ impedance cable specified for use with CAN must be used for CAN link. Cat GCCP 1.2/1.3 utilizes BELDEN 9841 (or equivalent) cable for RS485 communication. The cable is rated to a maximum length of 1.2 km ( 0.75 miles).


[^0]Modules are fitted with CAN interface as standard and receives engine data from engine ECU or Electronic Control Modules (ECMs) compliant with CAN SAE J1939 standard.

ECU or ECMs monitor operating parameters of engine such as speed, oil pressure, coolant temperature, to monitor closely and control the engine.

Industry standard communications interface (CAN) transports data gathered by ECU or ECM of the engine using SAE J1939 protocol. The data transport allows Cat GCCP 1.2/1.3 control panel to access the engine parameters without any physical connection to the sensor device.

The ECU port is used for point-to-point cable connection of more than one device and connections to CAN scanner, PLC, and CAN controllers and so on. The operator can now view the various operating parameters of the engine.

## SAE J1939-75

Note: Refer to Section "CAN Interface Specification (SAE J1939-75)" for further details of CAN communication.

When SAE J1939-75 is enabled in the module configuration, the module AC measurements and alarms configuration are sent to the CAN bus using the ECU port. The AC measurements and alarms configuration are received through an external monitoring device.

| Miscellaneous Options |  |
| :--- | :--- |
| J1939-75 Instrumentation Enable | $\nabla$ |
| J1939-75 Alarms Enable | $\nabla$ |
| CAN source address (instrumentation) | $\boxed{\square} 44$ |

## Illustration 10

g06528716

## SAE J1939-75

There are two check boxes to enable each of the two parts of the interface, AC measurement and ACrelated alarms. Refer to Illustration 10 for the two options. The module AC alarms are translated into SAE J1939 Diagnostic Messages 1 (DM1). No additional display screens are visible on the module when the options are selected.

The default CAN source address for additional SAE J1939-75 messages is 44 . The address can be changed by the generator supplier.

## Cat ${ }^{\circledR}$ Expansion Modules

Note: Controller must be the first unit on the DSENet link as a termination resistor is internally fitted to the controller. The resistor must be fitted to the last unit on the DSENet link. Refer to Section "Typical Arrangement of DSENet, and DSENet" for connection details.

Note: Caterpillar recommends utilizing BELDEN 9841 (or equivalent) cable for DSENet communication. The cable is rated to a maximum length of 1.2 km ( 0.75 miles).

DSENet is the interconnection cable between the host controller and the expansion modules.

Do not connect interconnection cable to any device other than Cat equipment designed for connection to DSENet.
Table 28

| Description | Specification |
| :---: | :---: |
| Cable Type | Two core screened and shielded twisted pair |
| Cable Characteristics | $120 \Omega$ impedance Low capacitance |
| Recommended Cable | BELDEN 9841 <br> BELDEN 9271 |
| Maximum Cable Length | 1.2 km ( 0.75 miles) when using BELDEN 9841 or direct equivalent. 600 m ( 656.4 yd ) when using BELDEN 9271 or direct equivalent. |
| DSENet <br> Topology | "Daisy Chain" bus with no stubs (spurs). |
| DSENet <br> Termination | $120 \Omega$ <br> Fitted internally to the host controller. Must be fitted externally to the last expansion module. |
| Maximum Expansion Modules | Total 20 devices can make up the DSENet. <br> Maximum 32 additional $0-10 \mathrm{~V}$ or $4-20 \mathrm{~mA}$ outputs <br> Maximum 80 additional relay outputs <br> Maximum 80 additional Light Emitting Diode indicators (LED indicators) <br> Maximum 24 additional Resistance Temperature Device (RTD) or thermocouple inputs <br> Maximum 4 Cat GCCP Battery Chargers |

Note: Only supported Cat GCCP Intelligent Battery Chargers can be connected to DSENet. Contact the authorized Caterpillar Dealer for further information.

The following are the possibilities given by maximum expansion modules:

- 32 additional 0-10 V or 4-20 mA outputs
- 80 additional relay outputs
- 80 additional LED indicators
- 24 additional RTD or thermocouple inputs
- 4 Cat GCCP Battery Chargers


## DSENet Used for MODBUS Engine Connection

The DSENet uses an RS485 hardware interface. This port can be configured for connection to units equipped with MODBUS capable controllers. The configuration leaves the RS485 interface free for connection to remote monitoring equipment (Building Management System, PLC, or PC RS485).

Note: The DSENet interface will not be available for connection to expansion devices, when the port is configured for connection for use with MODBUS capable controllers.

## ECU (ECM) Options

## Engine Type

Enhanced J1939
Alternative Engine Speed
Modbus Engine Comms Port
DSENet Port

Illustration 11
g06529025
An example of configuring the DSENet for connection to a Genset using Cat GCCP 1.2/1.3 Configuration Suit Software is shown in Illustration 11.

## Outputs (DC Supply Out)

| Output C | Source | Polarity |
| :---: | :---: | :---: |
|  | Close Gen Output | Energise |
| Output D | Close Mains Output * | De-Energise * |
| Output E | Common Warning * | Energise |
| Output F | Common Electrical Trip * | Energise |
| Output G | Common Shutdown * | Energise |
| Output H | Audible Alarm $\times$ | Energise |

Illustration 12
Audible Alarm

## Digital Inputs A - C

## Digital Input A

Function
Polarity
Action
Arming
LCD Display

| Alarm Mute |  |
| :--- | :--- |
| Close to Activate |  |
|  |  |
|  |  |
| Digital InputA |  |

Activation Delay 0s


| Miscellaneous Options |
| :--- |
| Lamp Test at Power-Up |
| Enable Fast Loading Feature |
| Audible Alarm Prior to Starting |
| All Wamings are Latched |
| Enable Sleep Mode |
| Enable Manual Fuel Pump Control |
| Enable Manual Frequency Trim Control |
| Support Right-To-Left Languages in Module Strings |
| Enable Cool Down in Stop Mode |
| Power Up in Mode |
| Limit Audible Alarm Duration |
| Enable Maintenance Reset on Module Front Panel |
| Maintenance Pin Protected Enable |
| Enable Backlight Power Saving Mode |
| Show Active DTC |
| Show Inactive DTC |
| Filter Generator Voltage Display |
| Filter Constant |
| Filter Mains Voltage Display |
| Filter Constant |

Illustration 14
g06538583
Miscellaneous Options
Cat GCCP 1.2/1.3 does not have an internal sounder. Hence an external alarm or indicator is required.

An external alarm or indicator can be utilized by the following means:

- Using Cat GCCP 1.2/1.3 Configuration Suite PC software to configure an auxiliary output for "Audible Alarm"
- Configuring an auxiliary input for "Alarm Mute"

The "Audible Alarm" output deactivates when the Alarm Mute input activates or after "Audible Alarm Duration" time ceases.

## Module Timers

## Interface Timers



An example of configuration to achieve external sounder with external alarm mute/lamp test button or an automatic mute after 20 seconds is shown in Illustration 15.

## Accumulated Instrumentation

Note: When an accumulated instrumentation value exceeds the maximum number, the value is reset and begins counting from zero again.

The amount of logged "Engine Hours" and "Number of Starts" can be set or reset using Cat GCCP 1.2/1.3 Configuration Suite PC Software.

The options may be locked with a Personal Identification Number (PIN) by Caterpillar depending upon the module configuration.
Table 29

| Description | Specification |
| :---: | :--- |
| Engine Hours <br> Run | Maximum 99999 hours 59 minutes (approxi- <br> mately 11 years 4 months). |
| Number of <br> Starts | $1,000,000$ (1 Million) |
| Accumulated <br> Power | $999999 \mathrm{kWh} / \mathrm{kvarh} / \mathrm{kVAh}$ |



Illustration 16
Dimensions of Module
(D1) 184 mm ( 7.2 inch)
(D2) 42.5 mm ( 1.67 inch)
(D3) 221 mm (8.7 inch)
(D5) 163 mm (6.4 inch)
(D6) 137 mm (5.4 inch)

## Dimensions

The dimensions of the module are 245 mm ( 9.6 inch) $\times 184 \mathrm{~mm}$ ( 7.2 inch) $\times 51 \mathrm{~mm}$ ( 2.0 inch).

## Panel Cutout

The dimensions of panel cutout of the module are 220 mm ( 8.7 inch) x 160 mm ( 6.3 inch).

## Module Weight

The weight of the module is $0.98 \mathrm{~kg}(2.161 \mathrm{lb})$.


The module is held into the panel fascia using the supplied fixing clip (3). Follow the below procedure to fix the module:

1. Withdraw fixing clip screw (4) (turn counterclockwise) until only the pointed end protrudes from fixing clip (3).
2. Insert the three prongs of fixing clip (3) into the slots at the side of the module case.
3. Pull fixing clip (3) backwards (towards the back of the module) ensuring all the three prongs of the clip are inside the allotted slots.
4. Turn fixing clip screws (4) in clockwise direction until the screws reach the panel fascia.
5. Turn the screw a quarter of a turn to secure the module into the panel fascia.

Note: Do not overtighten fixing clip screws (4).

Cable Tie Fixing Points


Illustration 18
g06529089
Location of Fixing Clips on the Module
(5) Cable Tie

Cable tie (5) fixing points are included at the rear side of the case of the module to aid wiring.

Including the fixing points at the rear side relieves strain to the cable loom by removing the weight of the loom from the screw connectors. This action reduces the chance of future connection failures.

Do not overtighten cable tie (5) (for instance with cable tie tools). Overtightening might damage the module case.

(Table 30, contd)

| Standard | Description |
| :---: | :---: |
| BS EN 60068-2-6 (Vibration) | Ten sweeps in each of three major axes 5 Hz to 8 Hz at $\pm 7.5 \mathrm{~mm}$ ( 0.30 inch ) 8 Hz to 500 Hz at $\mathrm{g}_{\mathrm{n}}$ |
| BS EN 60068- <br> 2-27 (Shock) | Three shocks in each of three major axes 15 $\mathrm{g}_{\mathrm{n}}$ in ms . |
| $\begin{aligned} & \text { BS EN 60068- } \\ & \text { 2-30 (Damp } \\ & \text { heat cyclic) } \end{aligned}$ | $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$ to $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$ at $95 \%$ for 48 hours |
| $\begin{gathered} \text { BS EN 60068- } \\ \text { 2-78 (Damp } \\ \text { heat static) } \end{gathered}$ | $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ at $95 \%$ for 48 hours |
| BS EN 60950 (Electrical safety) | Safety of information technology equipment, including electrical business equipment. |
| BS EN 61000-6-2 (Electromagnetic Compatibility) | Electromagnetic Compatibility (EMC) Generic Immunity Standard (Industrial). |
| BS EN 61000-6-4 (Electromagnetic Compatibility) | EMC Generic Emission Standard (Industrial). |
| BS EN 60529 <br> (Degrees of protection provided by enclosures) | IP65 (front of the module when installed into the control panel with the optional sealing gasket). <br> IP42 (front of the module when installed into the control panel WITHOUT being sealed to the panel). |

g06529093
Illustration 19
Location of Fixing Clips on the Module
(6) Silicon Gasket

Silicon gasket (6) improves sealing between the module and the panel fascia. The gasket is fitted to the module before installing into the panel fascia.

Note: Ensure that silicon gasket (6) is correctly fitted to the module to maintain the integrity of the seal.

## Applicable Standards

Table 30

| Standard | Description |
| :---: | :---: |
| BS EN 60068- <br> $2-1$ (Minimum <br> temperature) | $-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)$ |
| BS EN 60068- <br> 2-2 (Maximum <br> temperature) | $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$ |


(Table 30, contd)

| Standard | Description |
| :--- | :--- |
|  | 74- Alarm relay <br>  <br> 78- Phase angle measuring relay <br> editor) <br> 81- Frequency relay <br> 83- Automatic selective control or transfer (using internal PLC <br> relay <br> 86- Lockout relay |

## Enclosure Classifications

## IP Classifications

Module specification under BS EN 60529 degrees of protection provided by enclosures.

Note: IP65 (front of the module when module is installed into the control panel with the optional sealing gasket).

Note: IP42 (front of the module when module is installed into the control panel WITHOUT being sealed to the panel).

Table 31

| First Digit | Second Digit |
| :---: | :---: |
| Protection Against Contact and Ingress of Solid Objects | Protection Against Ingress of Water |
| 0 - No protection | 0-No protection |
| 1 - Protection against ingress solid objects with a diameter of more than 50 mm ( 2.0 inch ). <br> No protection against deliberate access. For example, with a hand, but large surfaces of the body are prevented from approach. | 1 - Protection against dripping water falling vertically. No harmful effect must be produced (vertically falling drops). |
| 2 - Protection against penetration of solid objects with a diameter of more than 12 mm ( 0.5 inch ). Fingers or similar objects prevented from approach. | 2 - Protection against dripping water falling vertically. There must be no harmful effect when the equipment (enclosure) is tilted up to 15 degrees from the normal position (drops falling at an angle). |
| 3 - Protection against ingress of solid objects with a diameter of more than 2.5 mm ( 0.10 inch ). Tool wires and so on, with a thickness of more than 2.5 mm ( 0.10 inch ) are prevented from approach. | 3 - Protection against water falling at any angle up to 60 degrees from the vertical. There must be no harmful effect (spray water). |
| 4 - Protection against ingress of solid objects with a diameter of more than 1.0 mm ( 0.04 inch ). <br> Tools, wires, and so on, with a thickness of more than 1.0 mm ( 0.04 inch ) are prevented from approach. | 4 - Protection against water splash against the equipment (enclosure) from any direction. <br> There must be no harmful effect (splashing water). |
| 5 - Protection against harmful dust deposits. Ingress of dust is not prevented completely, but the dust must not enter in sufficient quantity to interface with satisfactory operation of the equipment. Complete protection against contact. | 5 - Protection against water projected from a nozzle against the equipment (enclosure) from any direction. There must be no harmful effect (water jet). |
| 6 - Protection against ingress of dust (dust-tight). Complete protection against contact. | 6 - Protection against heavy seas or powerful water jets. Water must not enter the equipment (enclosure) in harmful quantities (splashing over). |

## NEMA Classification

Note: There is no direct equivalence between Internet Protocol (IP)/NEMA ratings (National Electrical Manufacturers Association ratings). IP figures shown are only approximate.

12 - Front of the module when module is installed into the control panel with the optional sealing gasket.

2 - Front of the module when module is installed into the control panel WITHOUT being sealed to the panel.

NEMA ratings are given the Table 32 :
Table 32

| Rating | Description |
| :---: | :--- |
| 1 | Provides protection contact with the enclosure <br> equipment and against dirt falling. |
| IP30 <br> IP31 | Provides protection against limited amounts of falling <br> water and dirt. |
| 3 | Provides protection against windblown dust, rain, <br> and sleet. Undamaged by the formation of ice on the <br> enclosure. |
| IP64 | Provides protection against rain and sleet. Undam- <br> aged by the formation of ice on the enclosure. |

(Table 32, contd)

| Rating | Description |
| :---: | :--- |
| $4(X)$ | Provides protection against splashing water, wind- <br> blown dust, and rain, hose directed water. Undam- <br> aged by the formation of ice on the enclosure. (resist <br> corrosion). |
| IP66 |  |

## Installation Procedure

The module is mounted on the panel fascia. For dimensions and mounting details, refer to Section "Dimensions and Mounting".

## User Connections

Note: Availability of some terminals depends upon the module version.


Illustration 20
g06529211
Icons on Rear Side of the Module
(7) Terminals 29 to 36
(10) UL Ratings
(13) Terminals 26 to 28
(8) Terminals 37 to 41
(11) Terminals 1 to 12
(14) USB Port
(9) Terminals 50 to 52
(12) Terminals 15 to 25

To aid user connection, icons are used on the rear of the module to help identify terminal functions. An example is shown in Illustration 20.

## Connection Description

## DC Supply, E-Stop Input, DC Outputs, and Charge Fail Input

Note: "Fuel" and "Start" output requirements may be different when the module is configured for operation with an electronic engine. Refer to the appropriate electrical schematic of the Engine.

Table 33

| Pin | Description | Cable Size | Notes |
| :---: | :---: | :---: | :--- |
| 1 | DC Plant Sup- <br> ply Input <br> (Negative) | AWG 13 ( <br> $\left.2.5 \mathrm{~mm}^{2}\right)$ | Connect to <br> ground where <br> applicable. |
| 2 | DC Plant Sup- <br> ply Input <br> (Positive) | AWG 13( <br> $\left.2.5 \mathrm{~mm}^{2}\right)$ | Supplies the <br> module and DC <br> Outputs C, D, E, <br> F, G \& H |
| 3 | Emergency <br> Stop Input | AWG 13 ( <br> $\left.2.5 \mathrm{~mm}^{2}\right)$ | Plant Supply <br> Positive. Sup- <br> plies DC Outputs <br> A \& B. |

(Table 33, contd)

| Pin | Description | Cable Size | Notes |
| :---: | :---: | :---: | :---: |
| 4 | DC Output A <br> (FUEL) | AWG 13 ( <br> $2.5 \mathrm{~mm}^{2}$ ) | Plant Supply Positive from terminal 3. 5 A DC rated Fixed as fuel relay if electronic engine is not configured. |
| 5 | DC Output B (START) | AWG 13 ( <br> $2.5 \mathrm{~mm}^{2}$ ) | Plant Supply Positive from terminal 3.5ADC rated Fixed as start relay if electronic engine is not configured. |
| 6 | Charge Fail/ Excite | AWG 13( <br> $2.5 \mathrm{~mm}^{2}$ ) | Do not connect to ground (battery negative). If charge alternator is not fitted, leave this terminal disconnected. |
| 7 | DC Output C | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Plant Supply Positive from terminal 2. 2 A DC rated. |
| 8 | DC Output D | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Plant Supply Positive from terminal 2. 2 A DC rated. |
| 9 | DC Output E | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Plant Supply Positive from terminal 2. 2 A DC rated. |
| 10 | DC Output F | AWG 18 ( $\left.1.0 \mathrm{~mm}^{2}\right)$ | Plant Supply Positive from terminal 2. 2 A DC rated. |
| 11 | DC Output G | AWG 18 ( $\left.1.0 \mathrm{~mm}^{2}\right)$ | Plant Supply Positive from terminal 2. 2 A DC rated. |
| 12 | DC Output H | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Plant Supply Positive from terminal 2. 2 A DC rated. |

## Analogue Sensor Inputs, MPU, and ECU

Note: Terminal 15 (sensor common) MUST be connected to the Earth point on the "Engine Block" and not within the control panel. The terminal must provide an electrical connection to the sensor bodies. The connection MUST NOT be used to provide an Earth connection for other terminals or devices. Run a separate Earth connection from the system Earth star point to terminal 15 directly, to avoid using the Earthing point for other connections.

Note: Ensure not to insulate the entire thread while using PTFE insulating tape on the sensor thread when using Earth return sensors. Insulating the entire thread prevents the sensor body from being Earthed via the engine block.

Note: A screened $120 \Omega$ impedance cable specified for use with CAN must be used for the CAN ECU links. Caterpillar recommends utilizing BELDEN 9841 (or equivalent) cable for RS485 communication. The cable must be rated to a maximum length of 1.2 km ( 0.75 miles).

Note: For further details on connection to electric engines, refer to the appropriate electrical schematic of the Engine.

Table 34

| Pin | Description | Cable Size | Notes |
| :---: | :---: | :---: | :---: |
| 15 | Sensor Common Return | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Ground Return <br> Feed For <br> Sensors |
| 16 | Analogue Sensor Input A | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Connect To Oil Pressure Sensor |
| 17 | Analogue Sensor Input B | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Connect To Coolant Temperature Sensor |
| 18 | Analogue Sensor Input C | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Connect To Fuel Level Sensor |
| 19 | Analogue Sensor Input D | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Connect To Extra <br> Sensor (User <br> Configurable) |
| 20 | Magnetic Pickup Positive | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Connect To Magnetic Pickup Device |
| 21 | Magnetic <br> Pickup Negative | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Connect To Magnetic Pickup Device |
| 22 | Magnetic Pickup Screen | Shield | Connect To <br> Ground At One <br> End Only |
| 23 | CAN Port H | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Use only $120 \Omega$ CAN or RS485 approved cable |
| 24 | CAN Port L | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Use only $120 \Omega$ CAN or RS485 approved cable |
| 25 | CAN Port Screen | Shield | Use only $120 \Omega$ CAN or RS485 approved cable |

## DSE Net

Note: The controller must be the first unit on the DSENet link, as a termination resistor is internally fitted to the controller. The termination MUST be fitted to the last unit on the DSENet link.

Table 35

| Pin <br> No | Description | Cable Size | Notes |
| :---: | :---: | :---: | :---: |
| 26 | DSENet Ex- <br> pansion B | AWG 20 ( <br> $\left.0.5 \mathrm{~mm}^{2}\right)$ | Use only $120 \Omega$ <br> CAN or RS485 <br> approved cable |
| 37 | DSENet Ex- <br> pansion A | AWG 20( <br> $\left.0.5 \mathrm{~mm}^{2}\right)$ | Use only $120 \Omega$ <br> CAN or RS485 <br> approved cable |
| 28 | DSENet Ex- <br> pansion <br> Screen | Shield | Use only $120 \Omega$ <br> CAN or RS485 <br> approved cable |

## V1 (Generator), V2 (Mains) Voltage, and Frequency Sensing

Table 36

| Pin <br> No | Description | Cable Size | Notes |
| :---: | :---: | :---: | :---: |
| 29 | Generator L1 <br> (U) Voltage Sensing | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Connect to generator L1 (U) output (AC) (recommend 2 A fuse) |
| 30 | Generator L2 <br> (V) Voltage Sensing | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Connect to generator L2 (V) output (AC) (recommend 2 A fuse) |
| 31 | Generator L3 <br> (W) Voltage Sensing | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Connect to generator L3 (W) output (AC) (recommend 2 A fuse) |
| 32 | Generator <br> Neutral (N) Input | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Connect to generator Neutral terminal (AC) |
| 33 | Bus L1 (R) <br> Voltage Sensing | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Connect to Bus L1 (R) output (AC) (recommend 2 A fuse) |
| 34 | Bus L2 (S) Voltage Sensing | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Connect to Bus L2 (S) output (AC) (recommend 2 A fuse) |
| 35 | Bus L3 (T) <br> Voltage <br> Sensing | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Connect to Bus L3 (T) output (AC) (recommend 2 A fuse) |
| 36 | Bus Neutral (N) Input | AWG 18 ( <br> $1.0 \mathrm{~mm}^{2}$ ) | Connect to Bus Neutral terminal (AC) |

Note: Connection to a three phase, four wire alternator is described in Table 36 .

Note: Terminals 33 to $36(\mathrm{~V} 2)$ are not fitted to Cat GCCP 1.2/1.3.

## Current Transformers

Note: The module has a VA burden of 0.25 VA on the CT. Ensure that the CT is rated for the burden of the controller, the cable length being used, and any other equipment sharing the CT. Consult with the CT supplier for any queries.

Table 37

| Pin <br> No | Description | Cable Size | Notes |
| :---: | :---: | :---: | :---: |
| 37 | CT Secon- <br> dary for L1 | AWG 13 ( <br> $\left.2.5 \mathrm{~mm}^{2}\right)$ | Connect to s1 <br> secondary of L1 <br> monitoring CT |
| 38 | CT Secon- <br> dary for L2 | AWG 13 ( <br> $\left.2.5 \mathrm{~mm}^{2}\right)$ | Connect to s1 <br> secondary of L2 <br> monitoring CT |
| 39 | CT Secon- <br> dary for L3 | AWG 13 ( <br> $\left.2.5 \mathrm{~mm}^{2}\right)$ | Connect to s1 <br> secondary of L3 <br> monitoring CT |
| 40 | CT Common | AWG 13 ( <br> $\left.2.5 \mathrm{~mm}^{2}\right)$ | Connect to s2 <br> secondary of L1, <br> L2 \& L3 monitor- <br> ing CTs and <br> ground |

Note: Ensure correct polarity of the CT primary as shown in Table 37. Consult with the CT supplier if there are doubts.

## CT Connections



Illustration 21
g06528538
CT Connections
(1) Side facing Generator (Labeled as p1, k, or K)
(2) Side facing Load (Labeled as $\mathrm{p} 2, \mathrm{I}$, or L )

Side facing Generator (labeled as p1, k, or K) (1) is the primary of the CT that points towards the Generator.

Side facing Load (labeled as p2, I, or L) (2) is the primary of the CT that points towards the Load.
$s 1$ is the secondary of the CT that connects to the input for CT measuring of Cat GCCP 1.2/1.3 control panel.
s2 is the secondary of the CT that should be connected with s2 connections of all the other CTs. s2 is connected to the CT common terminal of the module.

Digital Inputs and RS485 Port
Table 38

| $\begin{aligned} & \text { Pin } \\ & \text { No } \end{aligned}$ | Description | Cable Size | Notes |
| :---: | :---: | :---: | :---: |
| 42 | Configurable Digital Input A | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Switch To Negative |
| 43 | Configurable Digital Input B | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Switch To Negative |
| 44 | Configurable Digital Input C | AWG 20 ( <br> $0.5 \mathrm{~mm}^{2}$ ) | Switch To Negative |
| 45 | Configurable Digital Input D | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Switch To Negative |
| 46 | Configurable Digital Input E | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Switch To Negative |
| 47 | Configurable Digital Input F | AWG 20 ( <br> $0.5 \mathrm{~mm}^{2}$ ) | Switch To Negative |
| 48 | Configurable Digital Input G | AWG 20 ( <br> $0.5 \mathrm{~mm}^{2}$ ) | Switch To Negative |
| 49 | Configurable Digital Input H | AWG 20 ( <br> $0.5 \mathrm{~mm}^{2}$ ) | Switch To Negative |
| 50 | RS485 Port Screen | Shield | Use only $120 \Omega$ CAN or RS485 approved cable |
| 51 | RS485 Port B <br> (+) | AWG 20 ( $0.5 \mathrm{~mm}^{2}$ ) | Connect to RXD + and TXD+Use only $120 \Omega$ CAN or RS485 approved cable |
| 52 | RS485 Port A <br> (-) | AWG 20 ( $\left.0.5 \mathrm{~mm}^{2}\right)$ | Connect to RXD- and TXDUse only $120 \Omega$ CAN or RS485 approved cable |

Note: Fit a $120 \Omega$ termination resistor across terminals $A$ and $B$ if Cat GCCP 1.2/1.3 control panel is the first or last device on R485 link.

Note: Screened $120 \Omega$ impedance cable specified for use with CAN must be used for CAN ECU link. Caterpillar recommends utilizing BELDEN 9841 (or equivalent) cable for RS485 communication. The cable is rated to a maximum length of 1.2 km ( 0.75 miles). Refer to Table 38 for cable sizes.

USB Slave (PC Configuration) Connector


Illustration 22
g06529177
Socket for Connection to PC with Cat GCCP 1.2/1.3 Configuration Software


Illustration 23
g06528634
USB Type A to Type B Connector
Note: USB connection cable between the PC and the module must not be extended beyond 5 m (16.4 ft). For distances over 5 m ( 16.4 ft ), there is a possibility of using a third-party USB extender. The USB can be extended up to 50 m ( 164.0 ft ).

Note: Do not overload the USB system of the PCs by connecting more than the recommended number of USB devices to the PC. Consult the PC supplier for further information.


Illustration 24
g06548182
Typical Wiring Diagram of Cat GCCP 1.2 Three Phase, Four Wire

Note 1 - Ground connections must be on the engine block and must be to the sensor bodies.

Note 2-120 $\Omega$ terminating resistor may be required externally.

Note 3 - Must be fitted as the first or the last unit on DSENet with no termination resistor. The subsequent first or last unit on DSENet must be fitted with a $120 \Omega$ termination resistor across terminals $A$ and $B$.

Note 4 - The module is first or last unit on the link. The module must be fitted with a $120 \Omega$ termination resistor across terminals $A$ and $B$.

A typical three phase four wire system is shown in Illustration 24. As every system has different requirements, the Illustration 24 does not intend to show a complete system. Contact the authorized Cat Dealer for further information.

Illustration 24 is applicable for the following AC topologies:

- Three Phase four Wire Star
- Three Phase four Wire Delta L1-N-L2
- Three Phase four Wire Delta L1-N-L3
- Three Phase four Wire Delta L2-N-L3

g06610176
Cat GCCP 1.3 Three Phase Four Wire

Note 1 - Ground connections must be on the engine block and must be to the sensor bodies.

NOTE 4. IF THE MODULE IS FIRST OR LAST UNIT ON THE LINK, IT MUST BE FITTED WITH $\wedge 120$ OHM TERMINATION RESISTOR ACROSS TERMINALS ^ AND B. NOTE 5. IT IS RECOMMENDED THAT THE GENERATOR AND MAINS SWITCHGEAR ARE MECHANICALLY AND ELECTRICALLY INTERLOCKED.
NOTE 6. CLOSE MAINS OUTPUT SHOULD BE CONFIGURED FOR CLOSE MAINS WITH A POLARITY OF DE-ENERGISE, AND THE NORMALLY CLOSED CONTACTS OF MBCR USED TO DRIVE THE SWITCHGEAR.

TERMINATION RESISTOR THE SUBSEQUE MUST BE FITTED WITH A 120 OHM TERMINATION RESISTOR ACROSS
TERMINALS A AND B.

NOTE 1. THESE GROUND CONNECTIONS MUST BE ON THE ENGINE BLOCK, AND MUST BE TO THE SENSOR BODIES
NOTE 2. 120 R TERMINATING RESISTOR MAY BE REQUIRED EXTERNALLY
SEE ENGINE MANUFACTURERS LITERATURE.
SEE ENGINE BE FITTED AS FIRST OR LAST UNIT ON DSENET WITH NO
ustration 25
-

Note 2-120 $\Omega$ terminating resistor may be required externally.

Note 3 - Must be fitted as the first or the last unit on DSENet with no termination resistor. The subsequent first or last unit on DSENet must be fitted with a $120 \Omega$ termination resistor across terminals $A$ and $B$.

Note 4 - The module is first or last unit on the link. The module must be fitted with a $120 \Omega$ termination resistor across terminals $A$ and $B$.

Note 5 - Recommended to mechanically and electrically interlock generator and switchgear.

Note 6 - Close mains output should be configured for close mains of MBCR used to drive the switchgear.

## Negative Earth

Typical wiring diagram shown in Illustration 24 shows connections for a negative Earth system (battery negative connects to Earth).

## Positive Earth

The following points must be followed when using a Cat GCCP 1.2/1.3 control panel with a Positive Earth System (battery positive connects to Earth):

- Follow the typical wiring diagram shown in Illustration 24 as common for all sections except for the Earth points.
- All points shown as Earth in the typical diagram shown in Illustration 24 should connect to the battery negative (not Earth).


## Floating Earth

The following points must be followed when the battery positive and/or battery negative terminals are not connected to Earth:

- Follow the typical wiring diagram as normal for all sections except the Earth points.
- All points shown as Earth in Illustration 24 should connect to the negative of the battery (not Earth).


## Typical Arrangement of DSENet

Note: This feature is not available if Cat GCCP 1.21 1.3 control panel has been configured to use the DSENet port as an interface to ECU.

Note: Screened $120 \Omega$ impedance cable specified for use with CAN must be used for the DSENet (RS485) connection.

20 devices can be connected to DSENet, made up of the devices listed in Table 39 :

Table 39

| Device | Maximum Number <br> Supported |
| :--- | :---: |
| Cat GCCP 1.2/1.3 Input Expansion | 4 |
| Cat GCCP 1.2/1.3 Output <br> Expansion | 10 |
| Cat GCCP 1.2/1.3 Remote <br> Annunciator | 10 |
| Cat GCCP 1.2/1.3 Battery Chargers | 4 |



NOTE 1
AS A TERMINATING RESISTUR IS
INTERNALLY FITTED TI THE
HOST CDNTROLLER, THE HOST
CONTROLLER MUST BE THE
FIRST UNIT ON THE DSEnet

NOTE 2
A 120 DHM TERMINATIUN
RESISTIR MUST BE FITTED TI
THE LAST UNIT ON THE DSEnet

Illustration 26
Typical Arrangement of DSENet
Note 1 - The host controller must be the first unit on the DSENet, as the terminating resistor is internally fitted to the host controller.

Note 2 - A $120 \Omega$ termination resistor must be fitted to the last unit on DSENet.

## Description of Controls

Note: The module may instruct an engine start event due to external influences.

Note: Prior to performing any maintenance on the system, remove the battery and isolate the supplies, as the engine might start at any time without warning.

Note: The following description details the sequences followed by a module containing the standard factory configuration. Refer to the configuration source for the exact sequences and timers observed by any particular module in the field.

Module control is via push buttons mounted on the front of the module "Stop/Reset Mode", "Manual Mode", "Auto Mode", "Alarm Mute and Lamp Test", and "Start" functions.

Only operate the above controls for a normal operation.

## Cat GCCP 1.2 and Cat GCCP 1.3 Modules



Illustration 27
g06531405
Cat GCCP 1.2 Module
(15) Menu Navigation Button
(16) Module Display/Generator Display
(17) Open Generator Button
(18) Mains LED Button
(19) Close Generator Button
(20) Stop/Reset Mode Button
(21) Selected Mode Indication LED
(22) Manual Mode Button
(23) Auto Mode Button
(24) Alarm Mute and Lamp Test Button
(25) Start Button


Illustration 28
g06610245
Cat GCCP 1.3 Module
(15) Menu Navigation Button
(16) Module Display/Generator Display
(19) Close Generator Button
(20) Stop/Reset Mode Button
22) Manual Mode Button
(23) Auto Mode Button
(24) Alarm Mute and Lamp Test Button
(25) Start Button
(26) Transfer to Mains
(27) Test Mode


Illustration 29
g06610246
Cat GCCP 1.3 Module
(18) Mains LED Button
(28) Mains available LED
(29) Generator Breaker LED

## Control Push Buttons

Note: For further details, refer to Section "Operation" in the document.

Stop/Reset Mode Button (20) - Pressing stop/reset mode button (20) puts the module in stop/reset mode. Pressing the button clears any alarm condition for which the triggering criteria has been activated. If the engine is running and the module is put into stop/reset mode, the module automatically instructs the generator off load ("Close Generator Output" becomes inactive if used).

The fuel supply de-energizes and the engine comes to a standstill. When in stop/reset mode, the generator remains at rest if any form of start signal is present.

Manual Mode Button (22) - Pressing manual mode button (22) puts the module in manual mode. When in manual mode, the module responds to start button (25) to start the generator and run off load.

To place the generator on load, use the transfer to generator button (19). The module automatically instructs the changeover device to take the mains off load ("Close Mains Output" becomes inactive) and place the generator on load.

Use open generator button (17) to place the generator off load. The module automatically
instructs the changeover device to take the generator off load and place the mains on load.

Additional digital inputs can be assigned to perform the functions.

If the engine is running off-load in manual mode and load signal becomes active, the module automatically instructs the changeover device to take mains off load. The generator is then placed on load.

Upon removal of the on load signal, the generator remains on load until either "Stop/Reset Mode" or "Auto Mode" is selected.

Auto Mode (23) - Pressing auto mode button (23) puts the module in auto mode. In auto mode, the module can control the function of the generator automatically.

The module monitors numerous start requests and when a start request is received, the set is automatically started. Once the generator is available, mains is taken off load and the generator is placed on load.

Upon removal of the starting signal, the module starts the return delay timer. Once the timer expires, the module takes the generator off load and place the mains on load.

The generator then continues to run during the cooling timer, until stopped. The module then waits for the next start event.

Alarm Mute/Lamp Test Button (24) - Alarm mute/ lamp test button (24) puts the audible alarm in the controller in silent mode. The button de-activates the audible alarm output (if configured) and illuminates all the LEDs on the fascia module as a lamp test function.

Start Button (25) - Start button (25) is only active in the "Stop/Reset Mode", "Manual Mode", and "Test Mode" .

Pressing start button (25) in stop/reset mode, powers up the engine ECU but does not start the engine.

Pressing start button (25) in manual mode or test mode starts and runs the generator off load in manual mode or on load in test mode.

Menu Navigation Button (15) - Menu navigation button (15) is used for navigating the instrumentation, event log, and configuration screens.

Open Generator Button (17) - Open generator button (17) is active only in manual mode. Pressing the button when the generator is on load opens the generator load switch. Pressing the button further has no effect.

## Viewing Instrument Pages

Scroll to view the different pages of information by repeatedly pressing the next and previous page buttons in the menu navigation button (15).

Note: A complete order and content of each information page are given in the following sections.

Once selected, the page remains on the Liquid Crystal Display (LCD) until the user selects a different page. The module reverts to the status display after certain period of inactivity (LCD page timer).

If no button is pressed upon entering an instrumentation page, the instruments displayed are automatically subjected to the setting of the LCD scroll timer. The LCD page and LCD scroll timers are configurable using Cat GCCP 1.2/1.3 Configuration Suite Software or by using the Front Panel Editor.


Illustration 30
g06529234
Factory Settings for Timers
Factory settings for module timers are shown in Illustration 30 . Press the instrumentation scroll button or menu navigation button (15) to scroll manually through all instruments on the currently selected page.

Note: Auto scroll is disabled. Scroll to the title of instrumentation page (i.e "Engine") to re-enable "Auto scroll"

After a short time (the duration of LCD scroll timer), the instrumentation display begins to auto scroll. When scrolling manually, the display automatically returns to the "Status" page if no buttons are pressed during the configuration LCD page timer.

The display shows the alarms page to draw the attention of the operator to the alarm condition, if an alarm activates while viewing the status page.

## Status

Note: Press menu navigation button (15) on the status page to view other configurable status screens, if configured.


## Illustration 31

g06533355
Factory Setting of Status Screen Showing Engine Stopped
"Home" page of the status page is shown in Illustration 31. The page is displayed when no other page has been selected. Status page is also automatically displayed after a certain period of inactivity (duration of LCD page timer) of the module control buttons.

| Status | $22: 31$ |
| :---: | :---: |
| Generator Available |  |

Illustration 32 g06529505
Engine Running
"Status" screen changes with the action of the controller. For example, when the Generator is running and available, the display shows that the Generator is available. Refer to Illustration 32.

Generator Locked Out
Status 22:31
Generator Locked Out
Illustration 33
Generator Locked Out
"Generator Locked Out" message shown in
Illustration 33 indicates that the generator cannot be
started due to an active "Shutdown or Electric Trip
Alarm" on the module. Press the next button or the
previous page button to clear the alarm, if the alarm
does not clear the fault.
Waiting for Generator
Status 22:31
Waiting For Generator
IIlustration 34
Generator Waiting
"Waiting for Generator" message shown in Illustration
34 indicates that the generator has started but not
reached the required loading voltage and/or loading
frequency as set in the module configuration. Press
the next page or previous page button. Scroll to the
"Generator" page to check if the generator voltage
and frequency is higher than the configured voltage
and loading frequency.

## Configurable Status Screens



Illustration 35
g06529557
Configurable Status Screen
Note: Contents of "Home Page" are configurable and can be changed to display various information broadcast on the CAN network. An example of "Home Page" being changed to show engine CAN related information is shown in Illustration 35 .

## Engine

| Engine |
| :--- |
| Ellustration 36 |
| Engine Page |
| The "Engine" page contains information about the |
| engine, measured or derived from the inputs of the |
| module or obtained from the engine ECU. |
| *- Denotes CAN ECU-specific information |
| - Engine Speed |
| - Engine Oil Pressure |
| - Engine Coolant Temperature |
| - Engine Battery Voltage |
| - Engine Run Time |
| - Engine Fuel Level |
| - Engine Oil Temperature* |
| - Engine Inlet Temperature* |
| - Engine Turbo Pressure* |
| - Engine Percent Torque* |

- Engine Demand Torque*
- Engine Percent Load*
- Non Friction Torque*
- Engine Oil Level*
- Engine Coolant Level*
- Cooling Fan Speed Level*
- Electrical Potential
- DEF Tank Level*
- DEF Level Status*
- SCR-DEF Lamps*
- SCR Action Timer*
- Engine Link*
- ECU Regeneration*
- ECU Regeneration Icons*
- Engine Soot Levels*
- DEF Tank Temperature*
- DEF Reagent Cons*
- SCR After Treatment Status*
- CAN Bus Information*
- Instant Fuel Rate
- Coolant Pressure*
- Exhaust Temperature*
- Fuel Temperature*
- Fuel Pressure*
- Fuel Consumption*
- Fuel Used*
- Flexible Sensors
- Engine Maintenance Alarm 1
- Engine Maintenance Alarm 2
- Engine Maintenance Alarm 3
- After Treatment Fuel Used*
- After Treatment Exhaust Gad Temperature*
- Engine Crank Case Pressure*
- Engine Injector Rail Pressure*
- Engine Exhaust Temperature*
- Intercooler Temperature*
- Turbo Oil Pressure*
- Fan Speed*
- Water In Fuel*
- Air Inlet Pressure*
- ECU ECR DEF Icons*
- DEF Counter Minimum*
- DPTC Filter Status*
- Engine ECU Link*
- Tire 4 Engine Information*


## Manual Fuel Pump Control



Illustration 37
g06529565
Engine Fuel Level Page
"Engine Fuel Level" page shown in Illustration 37 may have a tick icon depending upon the module configuration. The tick icon denotes that manual fuel pump control is available. Pressing and holding the Tick button allows manual fuel pump control.

DPF Regeneration Lamps


Illustration 38
DPF Regeneration Lamps
Depending upon the engine type selected in the configuration of the module, "Engine" section may include "DPF Regeneration Lamps" page shown in Illustration 38. Icons on the page show the status of various ECU functions.

Some of the icons are applicable to Tier 4 engine requirements. The icons flash at different rates to show the status of the ECU function. The following are the faults displayed on the screen:

ECU Amber Alarm - Activates when the module receives an Amber fault condition from the engine ECU.

ECU Red Alarm - Activates when the module receives a Red fault condition from the engine ECU.


DPF Active - Activates when the module receives a fault indication from the engine ECU indicating that the Diesel

## Particulate Filter is active.



DPF Inhibited - Activates when the module receives a fault indication from the engine ECU indicating that the Diesel Particulate Filter has been inhibited.


DPF Stop - Activates when the module receives a fault indication from the engine ECU indicating that the Diesel Particulate Filter has been stopped.


DPF Warning - Activates when the module receives a fault condition from the engine ECU indicating that the Diesel Particulate Filter has a fault condition.


HEST Active - Activates when the module receives a fault indication from the engine ECU indicating that the High Exhaust System Temperature is active.


DEF Low Level - Activates when the module receives a fault condition from the engine ECU indicating that the Diesel Exhaust Fluid Low Level is active.

SCR Inducement - Activates when the module receives a fault indication from the engine ECU indicating that the Selective Catalytic Reduction Inducement is active.

## Generator

| Generator |
| :--- |
| IIlustration 39 |
| Generator Page |
| "Generator" page contains electrical values of the |
| Generator, measured or derived from the voltage and |
| current inputs of the module. |
| Press the menu navigation button to scroll through |
| the "Generator" parameters listed below: |
| - Generator Voltage (Line to Neutral) |
| - Generator Voltage (Line to Line) |
| - Generator Frequency |

- Generator Current (A)
- Generator Load Line to Neutral (kW)
- Generator Total Load (kW)
- Generator Load Line to Neutral (kVA)
- Generator Total Load (kVA)
- Generator Single Phase Power Factors
- Generator Power Factor Average
- Generator Load Line to Neutral (kvar)
- Generator Total Load (kvar)
- Generator Accumulated Load (kWh, kVAh, kvarh)
- Generator Phase Rotation
- Generator Active Configuration


## Expansion

Note: Some display screens may be disabled depending upon the module configuration.


Illustration 40
g06529674
Oil Temperature
"Expansion" page contains measured values from various input expansion modules that are connected to Cat GCCP 1.2/1.3 module. Pressing the menu navigation button scrolls through the expansion parameters, if configured.

Note: Analogue inputs only appear if configured

## Charger ID

Note: Some display screens may be disabled depending upon the configuration of the module.

Press the menu navigation button and scroll through the charger ID parameters, if configured.


ID number configured in the expansion module of Cat GCCP 1.2/1.3 control panel is shown in Illustration 41. The page contains information and instrumentation of Cat GCCP battery charger that are connected to Cat GCCP 1.2/1.3 controller.

| Supply Voltage |  |
| :---: | :---: |
| L1-N | 240V |
| Illustration 42 <br> Supply Instrumentation Screen |  |
|  |  |
| Charger ID1 |  |
| Temperature | $\begin{aligned} & 32{ }^{\circ} \mathrm{C} \\ & 89^{\circ} \mathrm{F} \end{aligned}$ |
| Illustration 43 <br> Battery Charger Temperature Instrumentation Screen |  |
|  |  |
| Charger ID1 |  |
| Fan 1 | 100 rpm |
| Fan 2 | 0 rpm |

Illustration 44 g06529690

Battery Charger Fan Speed (When Supported by the Charger)


| Charger Output 1 |  |
| :--- | :---: |
| Output 26.91 V |  |

Illustration 46
g06529692
Output Voltage

| Charger Output 1 |  |
| :--- | ---: |
| Current | 7.05 A |
| Limit | 10.00 A |
| Power | 189 W |

Illustration 47
g06529708
Output Current, Limit, and Power

## Alarms

The "Common Alarm LED" illuminates (if configured) and an external "Audible Alarm" sounds when an alarm is active. Pressing alarm text/lamp test button (24) silences the audible alarm. Refer to Illustration 50 for alarm text/lamp test button (24).

The LCD changes from the "Information" page to display the "Alarm" Page. The LCD displays multiple alarms such as "Coolant Temperature High alarm", "Emergency Stop alarm" , and "Low Coolant Warning alarm" .

The alarms automatically scroll in the order that the alarms occur or press the menu navigation button to scroll through the alarm manually. The LCD displays the appropriate text in the event of an alarm. If an additional alarm then occurs, the module displays the appropriate text.


Illustration 48
Alarm Mute/Lamp Test
The module indicates the following in the alarms page:

- One out of two alarms are active
- The cause of the alarm (Oil Pressure Low)
- The type of alarm (Warning)


Illustration 49
g06533391
Example of Additional Alarms

## 2/2 Alarms

## Coolant Temp High

## Shutdown

Illustration 50 g06533394
Example of Additional Alarms
The module displays a message similar to Illustration 50 if there is an additional alarm.

## ECU Alarms (CAN Fault Codes / Direct-toConsumer (DTC))

Note: Refer to Cat engine ECU manual for appropriate Direct-to-Consumer code (DTC code) definitions and for details on the code/graphic meanings.


Illustration 51
g06529722
Type of Alarm
The controller displays alarm status messages from the ECU, in the alarms section of the display, when connected to a suitable CAN engine.

Press right menu navigation button (15) to access the list of current engine Diagnostic Trouble Codes (DTCs) from the ECU. DTCs are DM1 messages.

## 1/2 ECU Current DTCs <br> Water Level Low <br> SPN=131166, FMI=8, OC=127

## Illustration 52

g06529725

## DM1 DTC

The DM1 DTC is interpreted by the module and is shown on module display (16) as a text message. Refer to Illustration 52 for manufacturer DM1 DTC. Refer to Illustration 50 for module display (16).

## Event Log

The module maintains a log of past alarms and selected status changes. The log size has been increased in the module over the past module updates and is always subjected to change.

The modules log stores the last 250 log entries, with the latest version/update.


## Illustration 53

g06529730
Event Log
Event log is configured to include all possible options under the default factory settings. Event log can only be configured by the technician using Cat GCCP $1.2 /$ 1.3 Configuration Suite software.

Any subsequent event overwrites the older entry when the event log is full. Hence, the event log always contains the most recent events. The module logs the event type, along with the date and time (or engine running hours, if configured).

## 1 Event Log

Oil Pressure Low

## Warning

Illustration 54
g06529731
Event Log 1
To view the event log, repeatedly press menu navigation button (15) until the LCD screen displays the "Event Log" page. Press scroll down button to view the next most recent event. Continuing to press the scroll down button cycles through the past events. The display shows the most recent alarm and the cycle begins again.

Press right or left menu navigation button (15) to exit the event $\log$ and return to viewing the instruments.

## Protections Disabled

Note: Refer to Section "Protections" for further details on protections disabled.

Disabling the protections prevents the shutdown and electrical alarms from stopping the generator. The operator is informed that the events were blocked under such conditions.

## 1 Event Log

Oil Pressure Low

## Shutdown Blocked

## Illustration 55

 g06529737Shutdown Blocked

## Serial Port

## RS485 Serial Port

The items displayed on the serial port page change depending upon the configuration of the module.

Note: Factory default setting for the RS485 port is to operate at 115200 baud, MODBUS slave address 10.

## Connected to R485 MODBUS Master



Illustration 56 g06529749
Slave Device
The module operates as a MODBUS RTU slave device. There is only one Master (typically a PLC) Human Machine Interface system (HMI system), or PC SCADA system in a MODBUS system.

The master requests for information from the MODBUS slave (module) and may also send request to change the operating modes (in control systems), and so on. Unless the Master makes a request, the slave is quiet on the data link.

Note: Factory default settings are for the module to communicate at 115200 baud, MODBUS slave address 10.


## Illustration 57

Master Inactivity Timeout
"Master Inactivity Timeout" must be set to at least two times the value of the system scan time. For example, if a MODBUS master PLC requests data from the module once per second, timeout should be set to at least 2 seconds.

Note: Cat GCCP 1.2/1.3 MODBUS document containing register mappings inside Cat GCCP $1.2 /$ 1.3 control panel is available from PowerNet. Refer to the link below:

## https://engines.cat.com/en.html

## Configurable CAN

Note: Some display screens may be disabled depending upon the module configuration.

Configurable CAN instruments are intended to display CAN information from CAN devices such as fuel flow meters. The contents of the screens may vary depending upon the configuration done by the engine manufacturer.

Configurable CAN instruments are not viewable under default factory settings. The instruments are configurable by the technician using Cat GCCP $1.2 /$ 1.3 Configuration Suite software.

| Fuel Flow |  |  |
| :--- | :--- | :--- |
| 84 |  |  |
| L/h |  |  |
|  |  |  |
| Illustration 58 |  |  |
| Fuel Flow |  |  |
| Configurable CAN Instrument 1 to 30 |  |  |

About


Illustration 59
g06529757
About
"About" page contains important information about the module and the firmware versions such as Variant, Application Version, and USB ID (unique identifier for PC USB connection).

Version of the module main firmware is updatable using Firmware Update Wizard in Cat GCCP 1.2/1.3 Configuration Suite Software. Press scroll down button to access more information about the module.
Bootloader
Analogue
Bilustration 60
Bootloader and Analogue
Press the scroll down button to access more
information about the module.
Bootloader is the bootstrap software version.
Analogue is the version of the micro firmware file of
the module.


Illustration 61
g06529778
Engine Type and Version
Engine type and version of the engine file selected in the configuration is shown in Illustration 61.

## Operation

Note: The following descriptions detail the sequences of a module with the standard factory configuration. Always refer to the configuration source for the exact sequences and timers observed by any particular module in the field.

Quickstart Guide for Module Operation
Engine Starting


Illustration 62
g06529785
Starting Engine
Press manual mode button (22) followed by start button (25). Refer to Illustration 50 for manual mode button (22) and start button (25).

Note: Refer to Section "Operation" for further details on starting engine.

Engine Stopping


## Illustration 63

g06529790
Engine Stopping
The generator will stop when the stop/reset mode is selected.

## Stop/Reset Mode

Note: Changing the module modes is not possible if a digital input configured to "Panel Lock" is active. Viewing the instruments and event logs is not affected by "Panel Lock".

Pressing stop/reset mode button (20) activates stop/ reset mode. The LED above stop/reset mode button (20) illuminates to indicate stop/reset mode operation. Refer to Illustration 50 for stop/reset mode button (20).

In stop/reset mode, the module removes the generator from load before stopping the generator, if necessary. "Fail to Stop" alarm activates if the generator does not stop when requested (subjected to the setting of the "Fail to Stop" timer). The following conditions must be satisfied to detect the engine at rest:

- Engine speed is zero as detected by the CAN ECU.
- Generator AC Voltage and Frequency must be zero.
- Engine Charge Alternator Voltage must be zero.
- Oil pressure sensor must indicate low oil pressure.

When the engine stops and the module is in stop/ reset mode, the module configuration files from Cat GCCP Configuration Suite PC software can be installed. Also, front panel editor can be accessed to change the parameters.

Any latched alarms that have been cleared is at rest in the stop/reset mode. Engine does not start when in stop/reset mode. If start signals are received, input is ignored until auto mode is activated.

## Power Save Mode Enable

## Illustration 64

g06529795
Power Save Mode
When the module is configured for "Power Save Mode", leaving the module in stop/reset mode without any activity, will make the module enter power save mode. To wake the module, press any fascia control button.

## ECU Override

Pressing start button (25) in stop/reset mode powers up the engine ECU, but does not start the engine. ECU override can be used to check the status of CAN communication and to prime the fuel system. Refer to Illustration 50 for start button (25).

## Manual Mode

Note: If a digit input configured to panel lock is active, changing module modes is not possible. Viewing the instruments and event logs is not affected by panel lock.

Pressing manual mode button (22) activates manual mode. LED above manual mode button (22) illuminates to indicate manual mode operation. Generator does not start automatically in manual mode. Press start button (25) to begin the starting sequence. Refer to Illustration 50 for manual mode button (22) and start button (25).

## Starting Sequence

Note: There is no "Start Delay" in manual mode of operation.

Note: Compatible ECUs receive start command via CAN if the unit has been configured for CAN.

The fuel relay is energized and the engine is cranked. If the engine fails to fire during a cranking attempt, the starter motor is disengaged for the crank rest timer duration. The next start attempt is made after the crank rest timer. If the sequence continues beyond the set number of attempts, the start sequence is terminated and the display shows "Fail to Start". The starter motor disengages when the engine fires.

Speed detection is factory configured to be derived from the AC alternator output frequency. Speed can also be measured from "Magnetic Pick-Up" mounted on the flywheel or from CAN bus link to the engine ECU, depending on the module configuration. Rising oil pressure can be used to disconnect the starter motor but cannot detect underspeed or overspeed.

Once starter motor is disengaged, the "Safety on Delay" timer activates allowing the following to stabilize without triggering the fault:

- Oil Pressure
- High Engine Temperature
- Under-speed
- Charge Fail
- Any delayed Auxiliary fault inputs


## Engine Running

Note: Load transfer signal remains inactive until the generator is available. Inactivity prevents excessive wear on the engine and alternator.

When in manual mode, the load is transferred to the generator whenever a "Loading Request" is made. The possible sources for loading requests are limited depending on the state of the Manual Breaker Control function.

## Manual Breaker Control Disabled



- Pressing transfer to generator button (19). Refer to Illustration 50 for transfer to generator button (19).
- Activating an auxiliary input that has been configured to "Remote Start On Load" .
- Activating a built-in exercise scheduler if configured for "On Load" runs.
- Activating Dual Mutual Standby Balance Mode.

Once the generator is placed under load, the load will not be automatically removed. One of the following methods can be used to open the load switch manually depending on loading request state.

Follow the below procedure if the loading request has been removed:

1. Press open generator button (17). Refer to Illustration 50 for open generator button (17).
2. Activate auxiliary input that has been configured to Open Generator.
3. Press auto mode button (23) to return to auto mode. The set observes all auto mode start requests and stopping timers before beginning the auto mode stopping sequence. Refer to Illustration 50 for auto mode button (23).

Follow the below procedure if the loading request remains active:

1. Press stop/reset button (20) to remove the load and stop the generator. Refer to Illustration 50 for stop/reset button (20).
2. Activate an auxiliary input that has been configured to "Generator Load Inhibit" .

## Manual Breaker Control Enabled



- Pressing open generator button (17).
- Activating an auxiliary input that has been configured to "Transfer To Generator" / "Open Generator"
- Pressing auto mode button (23) to return to auto mode. The generator set observes all auto mode start requests and stopping timers before beginning the auto mode stopping sequence.
- Pressing stop/reset mode button (20) to remove load and stop the generator.
- Activating an auxiliary input that has been configured to "Generator Load Inhibit" .

Refer to Illustration 50 for open generator button (17), auto mode button (23), and stop/reset mode button (20).

## Stopping Sequence

In test mode, the generator set continues to run until either of the following conditions occur:

Stop/Reset Mode Button (20) is pressed - Delayed load outputs are de-activated immediately and the generator set immediately stops.

Auto Mode Button (23) is pressed - Generator set observed all auto mode start requests and stopping timers before beginning "auto mode Stopping Sequence".

## Auto Mode

Note: Changing module modes is not possible if a digital input configured to external panel lock is active. Panel lock does not affect viewing instruments and event logs.

Pressing auto mode button (23) activates auto mode. Illumination of the LED above auto mode button (23) indicates auto mode operations. In auto mode, the generator can operate automatically, starting and stopping as required with no user intervention. Refer to Illustration 50 for auto mode button (23).

## Waiting in Auto Mode

The starting sequence begins when a starting request is made. Starting requests can be from the following sources:

- Activation of an auxiliary input that has been configured to "Remote Start".
- Activation of a built-in exercise scheduler.
- Instruction from external remote telemetry devices using the RS232 or RS485 interface.
- Activation of "Dual Mutual Standby Balance Mode" . Refer to Section "Operation" for more details.


## Starting Sequence

Note: Compatible ECU receives start command via CAN and transmit the engine speed to Cat GCCP $1.2 /$ 1.3 controller if the unit has been configured for CAN.

The start delay timer begins to allow false start requests. The unit returns to a stand-by state if all start requests are removed during the "Start Delay" timer. Fuel relay energizes and engine cranks if a start request is still present at the end of the start delay timer.

If the engine fails to fire during cranking attempt, the starter motor is disengaged during crank rest timer. The next start attempt is made after the crank rest timer. If the sequence continues beyond the set number of attempts, the start sequence is terminated and the display shows "Fail to Start". The starter motor is disengaged when the engine fires. Speed detection is factory configured to be derived from the AC alternator output frequency.

Speed can also be measured from a magnetic pickup mounted on the flywheel or from the CAN link to the engine ECU depending on module.

Rising oil pressure can be used to disconnect the starter motor, but cannot detect underspeed or overspeed.

Once the starter motor has disengaged, the "Safety On Delay" timer activates, allowing the following parameters to stabilize without triggering a fault:

- Oil Pressure
- High Engine Temperature
- Under-speed
- Charge Fail
- Any delayed auxiliary fault inputs


## Engine Running

Note: Load transfer signal remains inactive until the generator is available. Inactivity prevents excessive wear on the engine and alternator.

Generator is placed on load, if configured. Stopping sequence begins if all start requests are removed.

## Scheduler

Controller contains a built-in exercise run scheduler, capable of automatically starting and stopping the set or inhibiting the set from starting. Up to 16 scheduled (in two banks of eight) start/stop/inhibiting start sequences can be configured to repeat on a seven day or 28 -day cycle. Scheduled runs may be on load or off load depending upon the module configuration.

## Bank 1



| Week | Day | Run Mode | Start Time | Duration |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| First - | Monday | Off Load | $\because$-09:00 | $\div 05: 00$ | Clear |
| First | Tuesday | On Load | $\div 1330$ | $\div 00: 30$ | Clear |
| First $\quad$ | Monday | Auto Start Inhibi | $\div 17: 00$ | : 12:00 K | Clear |
| First - | Monday | Off Load - | $\div 00: 00$ | $\div 00: 00$ | Clear |
| First | Monday | Off Load | - 00:00 | - 00:00 | Clear |
| First | Monday - | Off Load | $\div 00: 00$ | $\div 00: 00$ | Clear |
| First - | Monday - | Off Load | $\div 00: 00$ | $\div 00: 00$ | Clear |
| First - | Monday - | Off Load | $\div 00: 00$ | $\div 00: 00$ | Clear |

Screen Capture of Cat GCCP 1.2/1.3 Configuration Suite Software

A screen capture of Cat GCCP 1.2/1.3 Configuration Suite Software showing the configuration of "Exercise Scheduler" is shown in Illustration 67. In the example, the set starts at 09:00 on Monday and runs for 5 hours off load. The next set starts at 13:30 on Tuesday and runs for 30 minutes on load. The set is inhibited from automatically starting on Monday from 17:00 for 12 hours.

## Stop Mode

Scheduled runs do not occur when the module is in stop/reset mode.

## Manual Mode

Scheduled runs do not occur when the module is in manual mode waiting for a start request. Activating a scheduled run "On Load" when the module is operating off load in manual mode forces the set to run on load.

## Auto Mode

Scheduled runs operate only if the module is in auto mode with no "Shutdown or Electrical Trip" alarms active. If the module is in "Stop/Reset Mode" or "Manual Mode" when a scheduled run begins, engine will not be started. However, if the module is put into auto mode during a scheduled run, the engine will be started.

Depending upon the configuration by technician, an external input can be used to inhibit a scheduled run. If the engine runs off load in auto mode and a scheduled run configured to "On Load" begins, the set is placed "On Load" during the Schedule.

## Alternative Configuration

The system may have selectable configurations (for example, to select between 50 Hz and 60 Hz ) depending upon the system configuration by the generator supplier.

If alternative configuration has been enabled, the generator supplier will advise about activating the selection. Selection can be activated by operating an external selector switch or by selecting the required configuration file in the front panel configuration editor of the module.

## Protections

## Alarms

When an alarm is active, an internal audible alarm sounds and the common alarm output activates, if configured. Pressing alarm mute/lamp test button (24) silences the audible alarm. The LCD display moves from the information page to display alarm page. Refer to Illustration 50 for alarm mute/lamp test button (24).

## 1/2 Alarms <br> , Oil Pressure Low <br> Warning

Illustration 68
g06529711
Protection Alarm
In Illustration 68 from the module, the following can be observed:

- One out of two alarm is active
- The cause of the alarm (Oil Pressure Low)
- The type of alarm (Warning)

The LCD displays multiple alarms such as "Coolant Temperature High", "Emergency Stop", and "Low Coolant Warning". The alarms automatically scroll in the order that occurred or press menu navigation button (15) to scroll through manually. In the event of an alarm, the LCD displays the appropriate text. If an additional alarm occurs, the module displays the appropriate text.

## Protections Disabled

Configuration is possible to prevent "Shutdown and Electrical Trip" alarms from stopping the generator. Under such conditions, "Protections Disabled" appears on module display/generator display (16) to inform the operator. Refer to Illustration 50 for module display/generator display (16).

## 1/1 Alarms

## Oil Pressure Low

## Shutdown Blocked

## Illustration 69

g06530493
Protections Disabled
"Shutdown and Electrical Trip" alarms still appear.
The operator is informed that the alarms are blocked. The feature is provided to assist the technician in meeting specifications for "Warning Only",
"Protections Disabled", "Run to Destruction", "War Mode", or other similar wording.

When configuring the feature in the PC software, the technician would make the feature permanently active or only active upon operation of an external switch. The technician provides a key operated switch. The location of the switch varies depending upon the manufacturer. The switch prevents inadvertent activation.

Depending upon the configuration, a warning alarm may be generated when the switch is operated. The feature is configurable in the PC configuration software for the module. Configuring a controller that has "Protections Disabled" configured alerts the user with a warning message displayed on the PC screen. The alert helps the user to acknowledge the problem before the configuration of the controller is changed, preventing inadvertent activation of the feature.

## Reset Electrical Trip

Configuring "Reset Electrical Trip" enables the operator to reset electrical trip alarm for a configurable number of times before the generator has stopped. Resetting the electrical trip alarm before the generator stops allows the generator to go back on load without having to perform a cooling run initially.
"Electrical Trip" alarm can be prevented from stopping the generator. Under such conditions, the "Electrical Trip Stop Inhibited Warning" alarm appears on module display (16) to inform the operator. "Electrical Trip" alarms still appear however, the operator is informed the generator is inhibited from stopping.

## 1/2 Alarms

Electrical Trip Stop Inhibited
Warning

## Illustration 70

g06530506
Electrical Trip

## 2/2 Alarms <br> Gen Over Current <br> Electrical Trip

## Illustration 71

g06530507
Electrical Trip
The feature is provided to assist the technician in meeting specification requirements to ensure that the generator takes load again after the alarm has been reset. Depending upon the configuration, the generator may go into a cooling run or be inhibited from stopping after the "Electrical Trip" alarm activates.

When configuring the feature in the PC software, the technician chooses to make "Electrical Trip" alarms resettable using a switch connected to an input configured for "Reset Electrical Trip" . The "Electrical Trip" alarms can also be made resettable by pressing close generator button (19). Refer to Illustration 50 for close generator button (19).

The technician provides a key operated switch. The location of the switch varies depending upon manufacturer. The switch prevents inadvertent activation.

Press close generator (19) to place the generator on load on the following conditions:

- Cat GCCP 1.2/1.3 control panel is in manual mode
- No other on load request is active

Configuring the controller that has "Reset Electrical Trip" enabled, displays a warning message on the PC screen for the user to acknowledge before the controller configuration is changed. This action prevents inadvertent activation of the feature.

## 1/1 Alarms

## ECU Warning

## Warning

Illustration 72
g06530510
Type of Alarm
An example of Cat GCCP $1.2 / 1.3$ showing the warning message is shown in Illustration 72 . When connected to a suitable CAN engine, the controller displays alarm status messages from the ECU in the Alarms section of the display.

## 1/2 ECU Current DTCs <br> Water Level Low <br> SPN=131166, $\mathrm{FMI}=8, \mathrm{OC}=127$

Illustration 73
g06530518
ECU Current DTC
Press right menu navigation button (15) to access the list of ECU Current DTCs from the ECU which are DM1 messages. The DM1 DTC is interpreted by the module and is shown on the display of the module as a text message. Manufacturer DTC is shown in Illustration 73.

## 1/10 ECU Prev. DTCs <br> Water Level Low <br> $S P N=131166, F M I=8, O C=127$

ECU Previous DTC
Press right menu navigation button (15) to access the list of ECU current DTCs from the ECU which are Diagnostic Message 2 messages (DM2 messages). The DM2 DTC is interpreted by the module and is shown on module display/generator display (16) as a text message. Manufacturer DTC is shown in Illustration 74. Refer to Illustration 50 for module display/generator display (16).

## Warning Alarms

Warnings are non-critical alarm conditions and do not affect the operation of the engine system. Warning alarms serve to draw the attention of the operators to an undesirable condition.

```
1/2 Alarms
Coolant Temp High
Warning
```


## Illustration 75

Warning Alarm
In the event of an alarm, the LCD moves to the alarms page and scrolls through all active alarms. Warning alarms are self-resetting by default, when the fault condition is removed.

Note: Enabling "All Warnings are Latched" causes warning alarms to latch until reset manually.

Warning alarms are enabled using Cat GCCP 1.2/1.3
Configuration Suite along with a compatible PC.
"ECU Warning" is shown on the module display as a warning alarm if the module is configured for CAN and receives an error message from the ECU.

Table 40

| Fault | Description |
| :--- | :--- |
| Cat GCCP 1.2/1.3 ID 0 to 3 Ana- <br> logue Input (A to J High) | Module detected that an analogue input value of a Cat GCCP 1.2/1.3 Input Module had risen above the <br> "Flexible Sensor High Pre-Alarm Trip" level. |
| Cat GCCP 1.2/1.3 ID 0 to 3 Ana- <br> logue Input (A to J Low) | Module detected that an analogue input value of a Cat GCCP 1.2/1.3 had fallen below the "Flexible Sensor <br> Low Pre-Alarm Trip" level. |
| Cat GCCP 1.2/1.3 ID 0 to 3 Digi- <br> tal Input (A to J) | Module detected that a digital input configured to create fault condition on Cat GCCP 1.2/1.3 expansion <br> module became active. An appropriate message is displayed on the LCD. |
| Cat GCCP 1.2/1.3 ID 0 to 3 <br> Common Warning | Module detected that a battery charger connected by DSENet had issued a "Common Warning Alarm" |
| Analogue Input A to D (Digital) | Module detected that an analogue input configured as a digital input created a fault condition became ac- <br> tive and an appropriate message is displayed on the LCD. |
| Battery Detect Failure | Module detected that a battery charger connected by DSENet had issued a "Battery Detect Failure" alarm. |
| Battery Failure Detection Output <br> 1 | Module detected that a battery charger connected by DSENet had issued a "Battery Failure Detection" <br> alarm on Output 1. |
| Battery Failure Detection Output <br> 2 | Module detected that a battery charger connected by DSENet had issued a "Battery Failure Detection" <br> alarm on Output 2. |
| Battery High Current Output 1 | Module detected that a battery charger connected by DSENet had issued a "Battery High Current" alarm <br> on Output 1. |
| Battery High Current Output 2 <br> put 1 | Module detected that a battery charger connected by DSENet had issued a "Battery High Current" alarm <br> on Output 2. |

(Table 40, contd)

| Fault | Description |
| :---: | :---: |
| Battery High Temperature Output 2 | Module detected that a battery charger connected by DSENet had issued a "Battery High Temperature" alarm on Output 2. |
| Battery High Voltage Output 1 | Module detected that a battery charger connected by DSENet had issued a "Battery High Voltage" alarm on Output 1. |
| Battery High Voltage Output 2 | Module detected that a battery charger connected by DSENet had issued a "Battery High Voltage" alarm on Output 2. |
| Battery Low Voltage Output 1 | Module detected that a battery charger connected by DSENet had issued a "Battery Low Voltage" alarm on Output 1. |
| Battery Low Voltage Output 2 | Module detected that a battery charger connected by DSENet had issued a "Battery Low Voltage" alarm on Output 2. |
| Battery Temperature Sensor Fail Output 1 | Module detected that a battery charger connected by DSENet had issued a "Battery Temperature Fail" alarm on Output 1. |
| Battery Temperature Sensor Fail Output 2 | Module detected that a battery charger connected by DSENet had issued a "Battery Temperature Fail" alarm on Output 2. |
| Calibration Fault | Module detected that the internal calibration has failed. Contact the authorized Cat Dealer for Product Support. |
| Charge Alternator Failure (IEEE 37.2-27 DC Undervoltage Relay) | Module detected that the output voltage of the charge alternator had fallen below the "Charge Alternator Warning Trip" level for the configured delay timer. |
| Charger Fan Locked | Module detected that a battery charger connected by DSENet had a "Failure" alarm. |
| Charger High Temperature | Module detected that a battery charger connected by DSENet had a "High Temperature" alarm. |
| Charger Mains High Current | Module detected that a battery charger connected by DSENet had a "Mains High Current" alarm. |
| Charger Mains High Voltage | Module detected that a battery charger connected by DSENet had a "Mains High Voltage" alarm. |
| Charger Mains Low Voltage | Module detected that a battery charger connected by DSENet had a "Mains Low Voltage" alarm. |
| Charger Voltage Drop Charging Cable Output 1 | Module detected that a battery charger connected by DSENet had issued a "Voltage Drop Charging Cable" alarm on Output 1. |
| Charger Voltage Drop Charging Cable Output 2 | Module detected that a battery charger connected by DSENet had issued a "Voltage Drop Charging Cable" alarm on Output 2. |
| Coolant Temp High (IEEE C37.2-26 Apparatus Thermal Device) | Module detected that the engine coolant temperature had risen above the "High Coolant Temperature PreAlarm Trip" level after the Safety On Delay timer had expired. |
| DC Battery High Voltage (IEEE 37.2-59 DC Overvoltage Relay) | Module detected that the DC supply voltage had risen above the "Plant Battery Overvolts Warning Trip" level for the configured delay timer. |
| DC Battery Low Voltage (IEEE 37.2-27 DC Undervoltage Relay) | Module detected that the DC supply voltage had fallen below the "Plant Battery Undervolts Warning Trip" level for the configured delay timer. |
| DC Battery High Voltage (IEEE 37.2-59 DC Overvoltage Relay) | Module detected that the DC supply voltage had risen above the "Plant Battery Overvolts Warning Trip" level for the configured delay timer. |
| DC Battery Low Voltage (IEEE 37.2-27 DC Undervoltage Relay) | Module detected that the DC supply voltage had fallen below the Plant Battery Undervolts Warning Trip level for the configured delay timer. |
| DEF Level Low | Module received a fault condition from the engine ECU alerting about the DEF level. Module detected that the "DEF Level" had fallen below the "DEF Level Low Pre-Alarm Trip" level for the configured delay timer. |
| Digital Input A to H | Module detected that a digital input configured to create a fault condition became active and the appropriate LCD message is displayed. |

(Table 40, contd)

| Fault | Description |
| :---: | :---: |
| DPTC Filter | Module received a fault condition from the engine ECU alerting that the DPF/DPTC had activated. |
| ECU Amber | Module received an amber fault condition from the engine ECU. |
| ECU Data Fail | Module is configured for CAN operation but has not detected data being sent from the ECU engine. |
| ECU Malfunction | Module received a malfunction fault condition from the engine ECU. |
| ECU Protect | Module received a protect fault condition from the engine ECU. |
| ECU Red | Module received a red fault condition from the engine ECU. |
| Engine Over Speed (IEEE C37.2-12 Overspeed Device) | Module detected that the engine speed had risen above the "Over Speed Pre-Alarm Trip" level for the configured delay timer. |
| Engine Over Speed Delayed (IEEE C37.2-12 Overspeed Device) | Module detected that the engine speed had risen above the "Over Speed Trip" level but was below the "Over Speed Overshoot Trip" for the configured "Overshoot Delay" timer during starting. |
| Engine Under Speed (IEEE C37.2-14 Underspeed Device) | Module detected that the engine speed had fallen below the Under Speed Pre-Alarm Trip level for the configured delay timer after the "Safety On Delay" timer had expired. |
| Exp. Unit Failure | Module detected that communications to one of the DSENet expansion modules had been lost. |
| Flexible Sensor A to D High | Module detected that an analog input value had risen above the "Flexible Sensor High Pre-Alarm Trip" level. |
| Flexible Sensor A to D Low | Module detected that an analog input value had fallen below the "Flexible Sensor Low Pre-Alarm Trip" level. |
| Fuel Level High (IEEE C37.2-71 Liquid Level Switch) | Module detected that the engine fuel level rose above the "High Fuel Level Trip" level. |
| Fuel Level Low (IEEE C37.2-71 Liquid Level Switch) | Module detected that the engine fuel level had fallen below the "Low Fuel Level Trip" level. |
| Fuel Level Low Switch (IEEE C37.2-71 Liquid Level Switch) | Module detected that the engine low fuel level switch had activated. |
| Fuel Tank Bund Level High (IEEE C37.2-71 Liquid Level Switch) | Module detected that the fuel tank bund level switch had activated. |
| Fuel Usage <br> (IEEE C37.2-80 Flow Switch) | Module detected that the fuel consumption was more than the configured "Running Rate" or "Stopped Rate". |
| Generator Loading Frequency | Module detected that the generator output frequency had not risen above the "Generator Loading Frequency" setting after the warming up timer had expired. |
| Generator Loading Voltage | Module detected that the generator output voltage had not risen above the "Generator Loading Voltage" setting after the warming up timer had expired. |
| Generator Over Current (IEEE C37.2-50 Instantaneous Overcurrent Relay) <br> (IEEE C37.2-51 IDMT Overcurrent Relay) | Module detected that the generator output current had risen above the "Generator Over Current Trip". |
| Generator Over Frequency (IEEE C37.2-81 Frequency Relay) | Module detected that the generator output frequency had risen above the "Over Frequency Pre-Alarm Trip" level for the configured delay timer. |

(Table 40, contd)

| Fault | Description |
| :---: | :---: |
| Generator Over Frequency Delayed <br> (IEEE C37.2-81 Frequency Relay) | Module detected that the generator output frequency had risen above the "Over Frequency Trip" level but was below the "Over Frequency Overshoot Trip" for the configured "Overshoot Delay" timer during starting. |
| Generator Over Voltage (IEEE C37.2-59 AC Overvoltage Relay) | Module detected that the generator output voltage had risen above the "Over Voltage Pre-Alarm Trip" level for the configured delay timer. |
| Generator Reverse Power (IEEE C37.2-32 Directional Power Relay) | Module detected that the generator output kW had fallen below the "Reverse Power Trip" for the configured delay timer. |
| Generator Short Circuit (IEEE C37.2-51 IDMT Short Circuit Relay) | Module detected that the generator output current had risen above the "Short Circuit Trip" during the Inverse Definite Minimum Time function (IDMT function). |
| Generator Under Frequency (IEEE C37.2-81 Frequency Relay) | Module detected that the generator output frequency had fallen below the "Under Frequency Pre-Alarm Trip" level for the configured delay timer after the "Safety On Delay" timer had expired. |
| Generator Under Voltage (IEEE C37.2-27 AC Undervoltage Relay) | Module detected that the generator output voltage had fallen below the "Under Voltage Pre-Alarm Trip" level for the configured delay timer after the "Safety On Delay" timer had expired. |
| HEST Active | Module received a fault condition from the engine ECU alerting that the "HEST" had activated. |
| Inlet Temperature | Module detected that the engine ECU measurement of inlet temperature had risen above the "Inlet Temperature Alarm Pre-Alarm Trip" level. |
| kW Overload <br> (IEEE C37.2-32 Directional Power Relay) | Module detected that the generator output kW had risen above the Overload Protection Trip for the configured delay timer. |
| Loss of Magnetic Pick Up | Module detected that the Magnetic Pick-Up was not producing a pulse output after the required "Crank Disconnect" criteria had been met. |
| Low Coolant Warning | Module detected that the engine coolant temperature had fallen below the "Low Coolant Temperature PreAlarm Trip" level. |
| Low Load (IEEE C37.2-37 Undercurrent to Underpower Relay) | Module detected that the load had fallen below the "Low Load Alarm Trip" level. |
| Maintenance Due | Module detected that one of the configured maintenance alarms is due as the configured maintenance interval has expired. |
| Negative kvar (IEEE C37.2-40 Field Under Excitation Relay) | Module detected that the generator output kvar had fallen below the "Negative var Pre-Alarm Trip" for the configured delay timer. |
| Negative Phase Sequence (IEEE C37.2-46 Phase-Balance Current Relay) | Module detected that there was an imbalance of current across the generator phases greater than the "Negative Phase Sequence Trip" Level percentage setting. |
| Oil Pressure Low (IEEE C37.2-63 Pressure Switch) | Module detected that the engine oil pressure had fallen below the "Low Oil Pressure Pre-Alarm Trip" level after the "Safety On Delay" timer had expired. |
| Positive kvar <br> (IEEE C37.2-40 Field Over Excitation Relay) | Module detected that the generator output kvar had risen above the "Positive var Pre-Alarm Trip" for the configured delay timer. |
| Protections Disabled | Module detected that an input configured for "Protections Disable" became active. |
| SCR Inducement | Module received a fault condition from the engine ECU alerting about the SCR Inducement. |
| Water in Fuel | Module received a fault condition from the engine ECU alerting that water in the fuel had been detected. |

## Electrical Trip Alarm

Note: Fault condition must be resolved before the alarm is reset. Alarm cannot be reset if the fault condition is not resolved. The exception to this condition is the "Coolant Temp High" alarm and similar "Active From Safety On" alarms, as the coolant temperature could be high with the engine at rest.

Electrical trip alarms are latching and stop the generator but in a controlled manner. If there is an electrical trip, the module deactivates the "Close Generator Output" to remove the load from the generator.

After removing the load from the generator, the module starts the cooling timer and allows the engine to cool off-load before shutting down the engine. Fault must be cleared and the alarm must be reset to restart the generator.


Illustration 76 g06530533

Electrical Trip Alarm
LCD moves to the alarms page and scrolls through all active alarms in the event of an alarm. Electrical Trip alarms are latching alarms. Press stop/reset mode button (20) on the module to remove the fault. Refer to Illustration 50 for stop/reset mode button (20).

Table 41

| Fault |  |
| :--- | :--- |
| Cat GCCP 1.2/1.3 Input Expan- <br> sion Module ID 0 to 3 Analogue <br> Input A to J High | Module detected that an analog input value of a Cat GCCP Input Expansion Module had risen above the <br> "Flexible Sensor High Alarm Trip" level. |
| Cat GCCP 1.2/1.3 Input Expan- <br> sion Module ID 0 to 3 Analogue <br> Input A to J Low | Module detected that an analog input value of a Cat GCCP input expansion module had fallen below the <br> "Flexible Sensor Low Alarm Trip" level. |
| Cat GCCP 1.2/1.3 Input Expan- <br> sion Module Charger ID 0 to 3 <br> Common Electrical Trip | Module detected that a battery charger connected by DSENet had issued a "Common Electrical Trip <br> Alarm". |
| Analogue Input A to D (Digital) | Module detected that an analog input configured as a digital input to create fault condition became active <br> and an appropriate message is displayed on the LCD. |
| Auto Sense Fail | Module detected that the output voltage of the generator had risen above the "Over Voltage During Auto <br> Sensing Trip" level during starting while attempting to detect an alternative configuration to use. |
| Calibration Fault | Module detected that the internal calibration has failed. The unit must be returned back for investigation <br> and repair. |
| Coolant Temperature High <br> (IEEE C37.2 26 Apparatus <br> Thermal Device) | Module detected that the engine coolant temperature had risen above the "High Coolant Temperature <br> Electrical Trip" level after the "Safety On Delay" timer had expired. |

(Table 41, contd)

| Fault | Description |
| :---: | :---: |
| DEF Level Low | Module received a fault condition from the engine ECU alerting about the DEF level. Module detected that the "DEF Level" had fallen below the "DEF Level Low Alarm Trip" level for the configured delay timer. |
| Digital Input A to H | Module detected that a digital input configured to create a fault condition became active and an appropriate message is displayed on the LCD. |
| DPTC Filter | Module received a fault condition from the engine ECU alerting that the DPF/DPTC had activated. |
| ECU Amber | Module received an amber fault condition from the engine ECU. |
| ECU Data Fail | Module is configured for CAN operation but has not detected data being sent from the engine ECU. |
| ECU Malfunction | Module received a malfunction fault condition from the engine ECU. |
| ECU Protect | Module received a protect fault condition from the engine ECU. |
| ECU Red | Module received a red fault condition from the engine ECU. |
| Exp. Unit Failure | Module detected that communications to one of the DSENet expansion modules had been lost. |
| Flexible Sensor A to D Low | Module detected that an analog input value had fallen below the "Flexible Sensor Low Alarm Trip" level. |
| Fuel Level High (IEEE C37.2-71 Liquid Level Switch) | Module detected that the engine fuel level rose above the "High Fuel Level Trip" level. |
| Fuel Level Low (IEEE C37.2-71 Liquid Level Switch) | Module detected that the engine fuel level had fallen below the "Low Fuel Level Trip" level. |
| Fuel Level Low Switch (IEEE C37.2-71 Liquid Level Switch) | Module detected that the engine low fuel level switch had activated. |
| Fuel Tank Bund Level High (IEEE C37.2-71 Liquid Level Switch) | Module detected that the fuel tank bund level switch had activated. |
| Fuel Usage <br> (IEEE C37.2-80 Flow Switch) | Module detected that the fuel consumption was more than the configured "Running Rate" or "Stopped Rate". |
| Generator Loading Frequency | Module detected that the generator output frequency had not risen above the "Generator Loading Frequency setting" after the warming up timer had expired. |
| Generator Loading Voltage | Module detected that the generator output voltage had not risen above the "Generator Loading Voltage" setting after the warming up timer had expired. |
| Generator Over Current (IEEE C37.2-51 IDMT Overcurrent Relay) | Module detected that the generator output current had risen above the "Generator Over Current Trip" during the IDMT function. |
| Generator Phase Sequence Wrong (IEEE C37.2-47 Phase Sequence Relay) | Module detected that the phase rotation of the generator was different to the configured "Generator Phase Rotation Alarm" setting. |
| Generator Reverse Power (IEEE C37.2-32 Directional Power Relay) | Module detected that the generator output kW had fallen below the "Reverse Power Trip" for the configured delay timer. |
| Generator Short Circuit (IEEE C37.2-51 IDMT Short Circuit Relay) | Module detected that the generator output current had risen above the "Short Circuit Trip" during the IDMT function. |
| Inlet Temperature | Module detected that the engine ECU measurement of inlet temperature had risen above the "Inlet Temperature Alarm Trip" level. |
| kW Overload <br> (IEEE C37.2-32 Directional <br> Power Relay) | Module detected that the generator output kW had risen above the "Overload Protection Trip" for the configured delay timer. |

(Table 41, contd)

| Fault | Description |
| :--- | :--- |
| Loss of Magnetic Pick Up | Module detected that the Magnetic Pick-Up was not producing a pulse output after the required "Crank Dis- <br> connect" criteria had been met. |
| Low Load <br> (IEEE C37.2 - 37 Undercurrent <br> to Underpower Relay) | Module detected that the load had fallen below the "Low Load Alarm Trip" level. |
| Maintenance Due | Module detected that one of the configured maintenance alarms is due as the configured maintenance in- <br> terval has expired. |
| Negative kvar <br> (IEEE C37.2 - 40 Field Under <br> Excitation Relay) | Module detected that the generator output kvar had fallen below the "Negative var Alarm Trip" for the con- <br> figured delay timer. |
| Negative Phase Sequence <br> (IEEE C37.2-46 Phase-Bal- <br> ance Current Relay) | Module detected that there was an imbalance of current across the generator phases greater than the <br> "Negative Phase Sequence Trip Level" percentage setting. |
| Positive kvar <br> (IEEE C37.2 - 40 Field Over Ex- <br> citation Relay) | Module detected that the generator output kvar had risen above the "Positive var Alarm Trip" for the config- <br> ured delay timer. |
| SCR Inducement | Module received a fault condition from the engine ECU alerting about the SCR inducement. |
| Water in Fuel | Module received a fault condition from the engine ECU alerting that water in the fuel had been detected. |

## Shutdown Alarms

Note: Fault condition must be resolved before the alarm is reset. Alarm cannot be reset if the fault condition is not resolved. "Oil Pressure Low" alarm and similar "Active From Safety On" alarms are exceptions to this condition, as the coolant temperature could be high with the engine at rest.

Shutdown alarms are latching and immediately stop the generator. The module deactivates the "Close Gen Output" outputs on initiation of the electrical trip condition to remove the load from the generator.

The module starts the cooling timer and allows the engine to cool off-load before shutting down the engine once the outputs are deactivated. Fault must be cleared, and the alarm reset to restart the generator.


Illustration 77 g06530539
Shutdown Alarm
LCD moves to the alarms page and scrolls through all active alarms in the event of an alarm.
"Shutdown Alarms" are latching alarms. Press stop/ reset mode button (20) on the module to remove the fault. Refer to Illustration 50 for stop/reset mode button (20).

Table 42

| Fault | Description |
| :---: | :---: |
| Cat GCCP 1.2/1.3 Input Expansion Module ID 0 to 3 Analogue Input A to J High | Module detected that an analog input value of a Cat GCCP Input Expansion Module had risen above the "Flexible Sensor High Alarm Trip" level. |
| Cat GCCP 1.2/1.3 Input Expansion Module ID 0 to 3 Analogue Input A to J Low | Module detected that an analog input value of a Cat GCCP Input Expansion Module had fallen below the "Flexible Sensor Low Alarm Trip" level. |
| Cat GCCP 1.2/1.3 Input Expansion Module ID 0 to 3 Analogue Input A to J | The module detected that a digital input configured to create fault condition on Cat GCCP Input Expansion Module became active. An appropriate message is displayed on the LCD. |
| Cat GCCP 1.2/1.3 ID 0 to 3 Common Shutdown | Module detected that a battery charger connected by DSENet had issued a "Common Shutdown Alarm". |
| Analogue Input A to D (Digital) | Module detected that an analog input configured as a digital input to create a fault condition became active and an appropriate message displayed on the LCD. |
| Auto Sense Fail | Module detected that the output voltage of the generator had risen above the "Over Voltage During Auto Sensing Trip" level during starting whilst attempting to detect which alternative configuration to use. |
| Battery Temperature | Module detected that a battery charger connected by DSENet had issued a "Battery Temperature" alarm. |
| Calibration Fault | Module detected that the internal calibration has failed. The unit must be returned back for investigation and repair. |
| Charge Alternator Failure (IEEE C37.2-27DC Undervoltage Relay) | Module detected that the output voltage of the charge alternator had risen above the "Charge Alternator Shutdown Trip" level for the configured delay timer. |
| Charger Failure | Module detected that a battery charger connected by DSENet had a "Failure" alarm. |
| Charger Fan Locked | Module detected that a battery charger connected by DSENet had a "Failure" alarm. |
| Charger High Temperature | Module detected that a battery charger connected by DSENet had a "High Temperature" alarm. |
| Charger Input Fuse Fail | Module detected that a battery charger connected by DSENet had an "Input Fuse Fail" alarm. |
| Charger Mains High Current | Module detected that a battery charger connected by DSENet had a "Mains High Current" alarm. |
| Charger Mains High Voltage | Module detected that a battery charger connected by DSENet had a "Mains High Voltage" alarm. |
| Charger Mains Low Voltage | Module detected that a battery charger connected by DSENet had a "Mains Low Voltage" alarm. |
| Charger Reverse Polarity | Module detected that a battery charger connected by DSENet had a "Reverse Polarity" alarm. |
| Charger Short Circuit | Module detected that a battery charger connected by DSENet had a "Short Circuit" alarm. |
| Charger Short Circuit / Reverse Polarity | Module detected that a battery charger connected by DSENet had a combined "Short Circuit" and "Reverse Polarity" alarm. |
| Coolant Sender O/C | Module detected that circuit to the engine coolant temperature sensor had become open circuit. |
| Coolant Temp High (IEEE C37.2-26 Apparatus Thermal Device) | Module detected that the engine coolant temperature had risen above the "High Coolant Temperature Shutdown Trip" level after the "Safety On Delay" timer had expired. |
| Coolant Temp High Switch (IEEE C37.2-26 Apparatus Thermal Device) | Module detected that the high engine coolant temperature switch had activated after the "Safety On Delay" timer had expired. |
| DEF Level | Module received a fault condition from the engine ECU alerting about the DEF level. Module detected that the "DEF Level" had fallen below the "DEF Level Low Alarm Trip" level for the configured delay timer. |
| Digital Input A to D | Module detected that a digital input configured to create a fault condition became active and the appropriate LCD message is displayed. |
| DPTC Filter | Module received a fault condition from the engine ECU alerting that the DPF/DPTC had activated. |
| ECU Amber | Module received an amber fault condition from the engine ECU. |

(Table 42, contd)

| Fault | Description |
| :---: | :---: |
| ECU Data Fail | Module is configured for CAN operation but has not detected data being sent from the engine ECU. |
| ECU Malfunction | Module received a malfunction fault condition from the engine ECU. |
| ECU Protect | Module received a protect fault condition from the engine ECU. |
| ECU Red | Module received a red fault condition from the engine ECU. |
| Emergency Stop (IEEE C37.2-5 Stopping Device) | Module detected that emergency stop button had been pressed removing a positive voltage supply from the emergency stop input terminal. This input is failsafe (normally closed to emergency stop), and immediately stops the generator when the signal is removed. |
| Engine Over Speed (IEEE C37.2-12 Overspeed Device) | Module detected that the engine speed had risen above the "Over Speed Alarm Trip" level for the configured delay timer. |
| Engine Over Speed Overshoot (IEEE C37.2-12 Overspeed Device) | Module detected that the engine speed had risen above the "Over Speed Overshoot Trip" during the configured "Overshoot Delay" timer whilst starting. |
| Engine Under Speed (IEEE C37.2-14 Underspeed Device) | Module detected that the engine speed had fallen below the "Under Speed Alarm Trip" level for the configured delay timer after the "Safety On Delay" timer had expired. |
| Exp. Unit Failure | Module detected that communications to one of the DSENet expansion modules had been lost. |
| Failed to Start <br> (IEEE C37.2-48 Incomplete <br> Sequence Relay) | Module detected that the generator failed to start as the generator did not meet the required Crank Disconnect criteria, during the configured number of Crank Attempts. |
| Failed to Stop <br> (IEEE C37.2-48 Incomplete Sequence Relay) | Module detects a condition that indicates the generator is running when the module has instructed the generator to stop. |
| Flexible Sensor A to D Fault | Module detected that circuit to the flexible sensor had become open circuit. |
| Flexible Sensor A to D High | Module detected that an analog input value had risen above the "Flexible Sensor High Alarm Trip" level. |
| Flexible Sensor A to D Low | Module detected that an analog input value had fallen below the "Flexible Sensor Low Alarm Trip" level. |
| Flexible Sensor A to F Open Circuit | Module detected that circuit to the flexible sensor had become open circuit. |
| Fuel Level High (IEEE C37.2-71 Liquid Level Switch) | Module detected that the engine fuel level rose above the "High Fuel Level Trip" level. |
| Fuel Level Low (IEEE C37.2-71 Liquid Level Switch) | Module detected that the engine fuel level had fallen below the "Low Fuel Level Trip" level. |
| Fuel Level Low Switch (IEEE C37.2-71 Liquid Level Switch) | Module detected that the engine low fuel level switch had activated. |
| Fuel Sensor Fault | Module detected that circuit to the engine fuel level sensor had become open circuit. |
| Fuel Tank Bund Level High (IEEE C37.2-71 Liquid Level Switch) | Module detected that the fuel tank bund level switch had activated. |
| Fuel Usage <br> (IEEE C37.2-80 Flow Switch) | Module detected that the fuel consumption was more than the configured Running Rate or Stopped Rate. |
| Generator Loading Frequency | Module detected that the generator output frequency had not risen above the "Generator Loading Frequency" setting after the warming up timer had expired. |
| Generator Loading Voltage | Module detected that the generator output voltage had not risen above the "Generator Loading Voltage" setting after the warming up timer had expired. |

(Table 42, contd)

| Fault | Description |
| :---: | :---: |
| Generator Over Current (IEEE C37.2-51 IDMT Overcurrent Relay) | Module detected that the generator output current had risen above the "Generator Over Current Trip" during the IDMT function. |
| Generator Over Frequency (IEEE C37.2-81 Frequency Relay) | Module detected that the generator output frequency had risen above the "Over Frequency Alarm Trip" level for the configured delay timer. |
| Generator Over Frequency Overshoot (IEEE C37.2-81 Frequency Relay) | Module detected that the generator output frequency had risen above the "Over Frequency Overshoot Trip" during the configured "Overshoot Delay" timer whilst starting. |
| Generator Over Voltage (IEEE C37.2-59 AC Overvoltage Relay) | Module detected that the generator output voltage had risen above the "Over Voltage Alarm Trip" level for the configured delay timer. |
| Generator Phase Sequence Wrong <br> (IEEE C37.2-47 Phase Sequence Relay) | Module detected that the phase rotation of the generator was different to the configured "Generator Phase Rotation Alarm" setting. |
| Generator Reverse Power (IEEE C37.2-32 Directional Power Relay) | Module detected that the generator output kW had fallen below the "Reverse Power Trip" for the configured delay timer. |
| Generator Short Circuit (IEEE C37.2-51 IDMT Short Circuit Relay) | Module detected that the generator output current had risen above the "Short Circuit Trip" during the IDMT function. |
| Generator Under Frequency (IEEE C37.2-81 Frequency Relay) | Module detected that the generator output frequency had fallen below the "Under Frequency Alarm Trip" level for the configured delay timer after the "Safety On Delay" timer had expired. |
| Generator Under Voltage (IEEE C37.2-27 AC Undervoltage Relay) | Module detected that the generator output voltage had fallen below the "Under Voltage Alarm Trip" level for the configured delay timer after the "Safety On Delay" timer had expired. |
| Inlet Temperature | Module detected that the engine ECU measurement of inlet temperature had risen above the "Inlet Temperature Alarm Trip" level. |
| kW Overload <br> (IEEE C37.2-32 Directional Power Relay) | Module detected that the generator output kW had risen above the Overload Protection Trip for the configured delay timer. |
| Loss of Magnetic Pick Up | Module detected that the magnetic pickup was not producing a pulse output after the required Crank Disconnect criteria had been met. |
| Low Load <br> (IEEE C37.2-37 Undercurrent to Underpower Relay) | Module detected that the load had fallen below the "Low Load Alarm Trip" level. |
| Magnetic Pick Up Fault | Module detected that the circuit to the magnetic pickup sensor had become open circuit. |
| Maintenance Due | Module detected that one of the configured maintenance alarms is due as the configured maintenance interval has expired. |
| Negative kvar (IEEE C37.2-40 Field Under Excitation Relay) | Module detected that the generator output kvar had fallen below the "Negative var Alarm Trip" for the configured delay timer. |
| Negative Phase Sequence (IEEE C37.2-46 Phase-Balance Current Relay) | Module detected that there was an imbalance of current across the generator phases greater than the "Negative Phase Sequence Trip Level" percentage setting. |
| Oil Pressure Sender Fault | Module detected that circuit to the engine oil pressure sensor had become open circuit. |

(Table 42, contd)

| Fault | Description |
| :--- | :--- |
| Oil Pressure Low <br> (IEEE C37.2-63 Pressure <br> Switch) | Module detected that the engine oil pressure had fallen below the "Low Oil Pressure Shutdown Trip" level <br> after the "Safety On Delay" timer had expired. |
| Oil Pressure Low Switch <br> (IEEE C37.2-63 Pressure <br> Switch) | Module detected that the low oil pressure switch had activated after the "Safety On Delay" timer had <br> expired. |
| Over Frequency Runaway <br> (IEEE C37.2-81 Frequency <br> Relay) | Module detected that the generator output frequency had risen above the "Run Away Trip" level. |
| Over Speed Runaway <br> (IEEE C37.2-12 Overspeed <br> Device) | Module detected that the engine speed had risen above the "Run Away Trip" level. |
| Positive kvar <br> (IEEE C37.2-40 Field Over Ex- <br> citation Relay) | Module detected that the generator output kvar had risen above the "Positive var Alarm Trip" for the config- <br> ured delay timer. |
| SCR Inducement | Module received a fault condition from the engine ECU alerting about the SCR Inducement. |
| Water in Fuel | Module received a fault condition from the engine ECU alerting that water in the fuel had been detected. |

## Maintenance Alarms

Depending upon the module configuration, one or more levels of engine maintenance alarm may occur based on the configured schedule.


Illustration 78
g06530541
Maintenance Alarm

A screen capture from Cat GCCP 1.2/1.3 Configuration Suite Software showing the configuration of "Maintenance Alarm" for 1, 2, and 3 is shown in Illustration 78. Maintenance alarm can be either a "warning" (set continues to run) or "shutdown" (running the set is not possible) when activated.

Site service engineer resets the maintenance alarm after performing the required maintenance. Follow any one of the following methods to reset the alarm:

- Activate an input that has been configured to "Maintenance Reset Alarm" for 1, 2, or 3.
- Press the maintenance reset button in Cat GCCP 1.2/1.3 Configuration Suite under "Maintenance" section.
- Press and hold stop/reset mode button (20) for 10 seconds on the desired "Maintenance Alarm" status page. The page may be protected with a PIN number. Refer to Illustration 50 for stop/reset mode button (20).


## Digital Input A

Function
Polarity
Action
Arming

## LCD Display

Activation Delay Os


## Digital Input A

Illustration 79
Resetting Maintenance Alarm
A screen capture from Cat GCCP 1.2/1.3
Configuration Suite Software showing the
configuration of a digital input for reset maintenance alarm is shown in Illustration 79.

## Maintenance Alarm Reset

Maintenance Alarm 1
Running Time Until Next Maintenance 10:00

Date Of Next Maintenance
11/03/2000
15:57:46


Illustration 80
Maintenance Alarm Reset
A screen capture from Cat GCCP 1.2/1.3
Configuration Suite Software showing the
maintenance alarm reset button in Cat GCCP 1.2/1.3 Configuration Suite SCADA/maintenance section.

| Miscellaneous Options |  |
| :--- | :--- |
| Enable Fast Loading Feature |  |
| Audible alarm prior to starting | $\square$ |
| All warnings are latched | $\square$ |
| Enable Sleep Mode | $\square$ |
| Enable Manual Fuel Pump Control | $\square$ |
| Support Right-to-Left Languages In Module Strings | $\square$ |
| Power Up In Mode | Stop |
| Enable Cool Down In Stop Mode | $\square$ |
| Enable maintenance reset on module front panel | $\square$ |
| Show Active DTC | $\square$ |
| Show Inactive DTC | $\square$ |
| Bus Breaker Not Fitted to 8660 |  |

Illustration 81 g06530591

Resetting Maintenance Alarm
A screen capture from Cat GCCP 1.2/1.3 Configuration Suite Software showing the configuration holding stop/reset button (20) to reset the maintenance alarm is shown in Illustration 81.

Overcurrent Alarm


Overcurrent alarm combines a simple warning trip level with a fully functioning Inverse Definite Minimum Time curve (IDMT curve) for thermal protection.

## Immediate Warning

If "Immediate Warning" is enabled, the controller generates a warning alarm when the trip level is reached. The alarm automatically resets once the generator loading current falls below the trip level, unless "All Warnings are Latched" is enabled.

## Inverse Definite Minimum Time Alarm (IDMT Alarm)

The controller begins to follow IDMT curve when the current on any phase passes the "Trip" setting if the overcurrent IDMT alarm is enabled. IDMT alarm triggers shutdown or electrical trip as selected in action, if the trip is surpassed for an excess amount of time.
LT=
Illustration 83
Formula for Tripping Time
The larger the over circuit fault, the faster the trip. The
speed of the trip depends upon the fixed formula
shown in Illustration 83. The following are the
parameters of the formula:
$\mathbf{T}$ - Tripping time (seconds)
$\mathbf{I}_{\mathrm{A}}$ - Actual measured current of the most highly
loaded line (L1, L2, or L 3 )
$\mathbf{I}_{\mathrm{T}}-$ Delayed trip point setting in current
$\mathbf{t}-$ - Time multiplier setting, and also represents the
tripping time in seconds at twice full load (when $\mathrm{I}_{\mathrm{A}} / \mathrm{I}_{\mathrm{T}}=$
2).

## Overcurrent Alarm

Immediate Warning
IDMT Alarm
Trip
Time Multiplier
Action


Illustration 84
DSE Factory Settings

The settings shown in Illustration 84 are factory settings taken from Cat GCCP 1.2/1.3 Configuration Suite PC Software for a brushless alternator. The settings are for normal running of the generator up to $100 \%$ full load. If the load is surpassed, the "Immediate Warning" alarm is triggered, and the set continues to run.

Alternator windings begin to overheat when the generator is overloaded. The aim of the IDMT alarm is to prevent the windings from being overloaded (heated). The amount of time that the alternator can be safely overloaded is governed by high overload condition. The default settings as shown in Illustration 84 allows alternator to overload to the limit of a typical brushless alternator. A $110 \%$ overload is permitted for 1 hour or a $200 \%$ overload is permitted for 36 seconds.

The controller follows a cooling curve if the alternator load reduces. A second overload condition may trip soon after the first as the controller knows if the windings have not cooled sufficiently.

## Creating Spreadsheet for Over Current IDMT Curve

The formula used to create a spreadsheet for overcurrent IDMT curve is shown in Illustration 83. The formula can be simplified for adding into a spreadsheet. The formula is useful for trying out different values of time multiplier setting "t" and viewing the results without testing on the generator.


Illustration 85

Spreadsheet for Over Current IDMT Curve (typical example)
(A) t (time multiplier setting)
(B) T (tripping time in seconds)
(C) $I_{A} / I_{T}$ (multiple of the Trip setting from 1.01 to 3.0 in steps of 0.1 )

$$
\begin{array}{l|l}
\hline f_{x} & =\$ A 2 / P O W E R((B \$ 1-1), 2) \\
\hline
\end{array}
$$

## Illustration 86

g06530863
Formula for Trip Time
The formula for tripping time cells is shown in Illustration 86.

## Short Circuit IDMT Alarm



Illustration 87
Short Circuit IDMT Alarm Curves

If Short Circuit alarm is enabled, the controller begins to follow the IDMT curve when the current on any phase passes the trip setting. The IDMT alarm triggers if the trip is surpassed for an excess amount of time.

$$
T=\frac{t \times 0.14}{\left(\left(\frac{I_{A}}{I_{T}}\right)^{0.02}-1\right)}
$$

Illustration 88 g06533873
Formula for Tripping Time in Short Circuit Condition
The larger the short circuit fault, the faster the trip. The speed of the trip depends on the fixed formula, shown in Illustration 88.

The following are the parameter of the formula:
T- Tripping time in seconds (accurate to $5 \%$, or $+/-$ 50 ms (whichever is greater)).
$I_{A}$ - Actual measured current
$\mathbf{I}_{\mathbf{T}}$ - Trip point setting in current
t - Time multiplier setting

## Short Circuit



Trip $: 200 \% \square 1000 \mathrm{~A}$
Time Multiplier $\quad: 0.01$

## Illustration 89

Factory Settings of DSE Configuration Suite Software

The settings shown in Illustration 89 are factory settings taken from Cat GCCP 1.2/1.3 Configuration Suite software.

Note: Due to large inrush currents from certain loads, such as motors or transformers, the default settings for short circuit alarm may need adjusting to compensate.

Alternator stator and rotor begin to overheat when the generator is overloaded. The aim of the IDMT alarm is to prevent the stator and rotor from being overloaded (heated). The amount of time for which the alternator can be safely overloaded is governed by high short circuit condition.

## Creating Spreadsheet for Short Circuit IDMT Curve

The formula used to create spreadsheet for short circuit curve is the same as given in Illustration 88.

The formula can be simplified for addition into a spreadsheet. The formula is useful for trying out different values of timer multiplier setting "t", and viewing the results without testing on the generator.


Illustration 90
g06541843
Spreadsheet for Short Circuit IDMT Curve (typical example)
(A) t (time multiplier setting)
(B) T (tripping time in seconds)
(C) $I_{A} / I_{T}$ (multiple of the Trip setting from 1.01 to 3.0 in steps of 0.1 )

$$
\begin{array}{l|l|l}
\hline f_{x} & =\left(\$ A 2^{*} 0.14\right) /(\operatorname{POWER}((\mathrm{B} \$ 1), 0.02)-1) \quad シ
\end{array}
$$



Illustration 92
g06531403
Earth Fault IDMT Alarm Curves
Default Current Protection Tripping Characteristics


Cat GCCP 1.2/1.3 default settings for IDMT tripping curves for overcurrent, short circuit, and Earth fault protections are shown in Illustration 93 . The default settings for overcurrent alarm allow the alternator to overload to the limit of a typical brushless alternator. The permitted overload is $110 \%$ for 1 hour or $200 \%$ for 36 seconds. The alternator begins to overheat in an overcurrent situation.

The aim of the overcurrent IDMT alarm is to prevent the windings from being overloaded (heated). The amount of time that the alternator can be safely overloaded is governed by high overload condition. The default settings for short circuit alarm allow an alternator to supply high current caused by a genuine short circuit or an inrush current of motor/transformer. The permitted overload is $300 \%$ for 0.17 seconds or $600 \%$ for 0.06 seconds.

The alternator begins to overheat to a point where the insulation breaks down, potentially causing a fire in a short circuit situation. The aim of the short circuit IDMT alarm is to prevent the insulation from melting due to excessive heat. The amount of time that the alternator can be safe in a short circuit condition is governed by the overload condition.

## Front Panel Configuration

In front panel configuration mode, the operator can fully configure the module through the display without the use of Cat GCCP 1.2/1.3 Configuration Suite PC Software.


## Illustration 94

g06531411
Fascia Buttons of Module
(15) Menu Navigation Button

Use the fascia buttons on the module shown in Illustration 94 to traverse the menu and make value changes to the parameters.

## Main Configuration Editor

## Accessing Main Configuration Editor

Note: More comprehension module configuration is possible via PC configuration software.

Press stop/reset mode button (20) to ensure that the engine is at rest and at the module. Press stop/reset mode button (20) and tick button together to enter the main configuration editor.

## Entering Pin

Note: Entering PIN is not set by Caterpillar when the module leaves the factory. The module must be replaced if the code has been lost or forgotten.

If a module security PIN has been set, the PIN request is then shown.

Note: To ensure security, the PIN is automatically reset when the editor exits (manually or automatically) the security screen.

Follow the below steps to set or change the PIN number:

1. The first "\#" changes to " 0 ". Press left or right menu navigation button (15) to adjust to the correct value.
2. Press right menu navigation button (15) when the first digit is correctly entered. The digit previously entered, now shows as "\#" for security.
3. Repeat Step 1 and Step 2 for the other digits of the PIN number. Press left menu navigation button (15) to move back to adjust one of the previous digits.
4. The PIN is checked for validity when the center button in menu navigation button (15) is pressed after editing the final digit. If the number is incorrect, the PIN must be reentered.
5. The editor will display if the PIN has been successfully entered or if the module PIN was not enabled.

## Editing Parameter

Note: Pressing and holding menu navigation button (15) provide the auto-repeat functionality. Values can be changed quickly by holding menu navigation buttons (15) for a prolonged period.

Follow the below procedure to edit a parameter:

1. Press left or right menu navigation button (15) to cycle the section to view/change.
2. Press up or down menu navigation button (15) to select the parameter to view/change within the current selected section.
3. Press center menu navigation button (15), to enter edit mode to edit the parameter. The parameter begins to flash to indicate editing.
4. Press left, right, up, or down menu navigation button (15) to change the parameter to the required value.
5. Press center menu navigation button (15) to save the value. The parameter ceases flashing to indicate that the parameter has been saved.

## Exiting Main Configuration Editor

Note: To ensure security, the editor automatically exits after 5 minutes of inactivity.

- Press and hold stop/reset mode button (20) to exit the editor without saving the changes.
- Press and hold center menu navigation button (15) to exit the editor and save the changes.


## Adjustable Parameters

Table 43

| Section | Parameter as Shown on Display | Value |
| :---: | :---: | :---: |
| Module | Contrast | 0\% |
|  | Language | English |
|  | Current Date and Time | Month, Year, hh: mm |
|  | Fast Loading |  |
|  | Warnings Latched |  |
|  | Lamp Test At Start Up | Active/Inactive |
|  | Power Save Mode |  |
|  | Backlight Power Saving |  |
|  | Event Log Display Format | Date and Time |
|  | Maintenance Pin Protect |  |
|  | Cool Down In Stop Mode | Active/Inactive |
|  | Hold Start Button To Crank |  |
|  | Power Up In Mode | Stop/Auto/Manual |
|  | Audible Alarm Timer |  |
|  | Suppress Instrument Generator Voltage | Active/Inactive |

(Table 43, contd)

(Table 43, contd)

| Section | Parameter as Shown on Display | Value |
| :---: | :---: | :---: |
|  | Oil Pressure Low Pre-Alarm |  |
|  | Coolant Temp Low Warning | $0^{\circ} \mathrm{C}$ |
|  | Coolant Temp High Pre-Alarm |  |
|  | Coolant Temp High Electrical Trip |  |
|  | Coolant Temp High Shutdown |  |
|  | Fuel Usage Running Rate | \% |
|  | Fuel Usage Stopped Rate |  |
|  | Specific Gravity | 0.89 |
|  | Pre-Heat Temp | $0^{\circ} \mathrm{C}$ |
|  | Pre-Heat Timer | 0 homos |
|  | Post-Heat Temp | $0^{\circ} \mathrm{C}$ |
|  | Post-Heat Timer | 0 homos |
|  | Battery Under Voltage Warning [Enable] | Active/Inactive |
|  | Battery Under Voltage Warning | V |
|  | Battery Under Voltage Warning Return |  |
|  | Battery Under Voltage Warning Delay | Ohom0s |
|  | Battery Over Voltage Warning [Enable] | Active/Inactive |
|  | Battery Over Voltage Warning Return | V |
|  | Battery Over Voltage Warning |  |
|  | Battery Over Voltage Warning Delay | Ohom0s |
|  | Over Speed Shutdown [Trip] | 0\% |
|  | Over Speed Delay | 0.89 |
|  | Overspeed Overshoot | $0^{\circ} \mathrm{C}$ |
|  | Overspeed Overshoot [Delay] | Ohom0s |

(Table 43, contd)

| Section | Parameter as Shown on Display | Value |
| :---: | :---: | :---: |
|  | Charge Alternator Failure Warning [Enable] | Active/Inactive |
|  | Charge Alternator Failure Warning | V |
|  | Charge Alternator Failure Warning Delay | Ohom0s |
|  | Charge Alternator Failure Shutdown [Enable] | Active/Inactive |
|  | Charge Alternator <br> Failure Shutdown | V |
|  | Charge Alternator Failure Shutdown Delay | Ohom0s |
|  | Low Battery Start [Enable] |  |
|  | Low Battery Run On Load [Enable] | , |
|  | Low Battery Start Threshold | 0 V |
|  | Low Battery Start Delay |  |
|  | Low Battery Run Time |  |
|  | Magnetic Pickup [Enable] | Active/Inactive |
|  | AC System | Three Phase Four Wire |
|  | Alternator Fitted | Active/Inactive |
|  | Alternator Poles | 4 |
|  | Under Voltage Alarm [Enable] | Active/Inactive |
|  | Under Voltage Alarm [Trip] | V |
|  | Under Voltage PreAlarm [Enable] | Active/Inactive |
|  | Under Voltage PreAlarm [Trip] | V |
|  | Under Voltage Delay | 0 s |
|  | Loading Voltage |  |
|  | Nominal Voltage | V |

(continued)
(continued)
(Table 43, contd)

| Section | Parameter as Shown on Display | Value |
| :---: | :---: | :---: |
|  | Over Voltage PreAlarm [Enable] | Active / Inactive |
|  | Over Voltage PreAlarm Return | V |
|  | Over Voltage PreAlarm [Trip] |  |
|  | Over Voltage Shutdown [Trip] |  |
|  | Over Voltage Delay | 0 s |
|  | Under Frequency Alarm [Enable] | Active/Inactive |
|  | Under Frequency Alarm [Trip] | Hz |
|  | Under Frequency Pre-Alarm [Enable] | Active/Inactive |
|  | Under Frequency <br> Pre-Alarm [Trip] | Hz |
|  | Under Frequency Delay | 0 s |
|  | Loading Frequency | Hz |
|  | Nominal Frequency |  |
|  | Over Frequency Pre-Alarm [Enable] | Active/Inactive |
|  | Over Frequency Pre-Alarm Return | Hz |
|  | Over Frequency Pre-Alarm [Trip] |  |
|  | Over Frequency Shutdown [Trip] |  |
|  | Over Frequency Delay | 0 s |
|  | Frequency Overshoot Shutdown | \% |
|  | Frequency Overshoot Delay | 0 hOmOs |
|  | CT Location | Gen / Load |
|  | CT Primary | A |
|  | CT Location | Gen / Load |
|  | CT Primary | A |
|  | Full Load Rating |  |
|  | Immediate Over Current [Enable] | Active/Inactive |

(continued)
(Table 43, contd)

(Table 43, contd)

| Section | Parameter as <br> Shown on <br> Display | Value |
| :---: | :---: | :---: |
|  | Fail To Stop Delay |  |
|  | LCD Page Timer | 0 h 0 m 0 s |

(continued)
(Table 43, contd)

(Table 43, contd)

| Section | Parameter as Shown on Display | Value |
| :---: | :---: | :---: |
|  | LCD Indicator 2 Polarity | Liter/Unit |
|  | LCD Indicator 3 Source | Refer to Section "Output Sources". |
|  | LCD Indicator 3 Polarity | Liter/Unit |
| Schedule | Schedule Enable | Active/Inactive |
|  | Schedule Period Bank 1 | Weekly/Monthly |
|  | Bank 1 Schedule 1 to 8 | Press the Tick button to begin editing then up or down when selecting the different parameters. |
|  | Schedule Period Bank 2 | Weekly/Monthly |
|  | Bank 2 Schedule 1 to 8 | Press the Tick button to begin editing then up or down when selecting the different parameters. |

## Output Sources

## Table 44

| Output Sources |  |
| :---: | :--- |
| 0 | Not Used |
| 1 | Air Flap Relay |
| 2 | Alarm Mute |
| 3 | Alarm Reset |
| 4 | Alternator Config 1 Selected |
| 5 | Alternator Config 2 Selected |
| 6 | Alternator Config 3 Selected |
| 7 | Alternator Config 4 Selected |
| 8 | Alternator Config 5 Selected |
| 9 | Analogue Input A |
| 10 | Analogue Input B |
| 11 | Analogue Input C |
| 12 | Analogue Input D |
| 13 | Arm Safety On Alarms |
| 14 | Audible Alarm |
| 15 | Auto Restore Inhibit |

(Table 44, contd)

| Output Sources |  |
| :---: | :---: |
| 16 | Auto Start Inhibit |
| 17 | Auxiliary Mains Failure |
| 18 | Battery High Volts |
| 19 | Battery Low Volts |
| 20 | Call For Scheduled Run |
| 21 | Charge Alt Fail Shutdown |
| 22 | Charge Alt Fail wiring |
| 23 | Close Gen Output |
| 24 | Close Gen Pulse |
| 25 | Close Mains Output |
| 26 | Close Mains Pulse |
| 27 | Combined Mains Failure |
| 28 | Maintenance Alm 1, 2, 3 |
| 29 | Common Low / High Frequency Alarm |
| 30 | Combined Low / High Frequency Warning |
| 31 | Combined Low / High Volt Alm |
| 32 | Combined Low / High Volt Whg |
| 33 | Common Alarm |
| 34 | Common E Trip |
| 35 | Common Shutdown |
| 36 | Common Warning |
| 37 | Config CAN 1 Active |
| 38 | Config CAN 10 Active |
| 39 | Config CAN 2 Active |
| 40 | Config CAN 3 Active |
| 41 | Config CAN 4 Active |
| 42 | Config CAN 5 Active |
| 43 | Config CAN 6 Active |
| 44 | Config CAN 7 Active |
| 45 | Config CAN 8 Active |
| 46 | Config CAN 9 Active |
| 47 | Coolant Cooler Control |
| 48 | Coolant Heater Control |
| 49 | Coolant Temp Switch |
| 50 | Cooling Down |
| 51 | Data Logging Active |
| 52 | DEF Level Low |
| 53 | DEF Level Low Alarm |

(Table 44, contd)

| Output Sources |  |
| :---: | :---: |
| 54 | Digital Input A |
| 55 | Digital Input B |
| 56 | Digital Input C |
| 57 | Digital Input D |
| 58 | Digital Input E |
| 59 | Digital Input F |
| 60 | Digital Input G |
| 61 | Digital Input H |
| 62 | HTR Fitted and ON |
| 63 | DPF Forced Regen Requested |
| 64 | DPF Non Mission |
| 65 | DPF Regen Active |
| 66 | DPF Regen Interlock |
| 67 | DPTC Filter |
| 68 | Droop Enable |
| 69 | ECU (ECM) Data Fail |
| 70 | ECU (ECM) Power |
| 71 | ECU (ECM) Shutdown |
| 72 | ECU (ECM) Stop |
| 73 | ECU (ECM) Warning |
| 74 | ECU Pre-Heat |
| 75 | EJP 1 |
| 76 | EJP 2 |
| 77 | Emergency Stop |
| 78 | Energise to stop |
| 79 | External Panel Lock |
| 80 | Fail to Start |
| 81 | Fail to Stop |
| 82 | Fan Control |
| 83 | Flex Sensor A High Alarm |
| 84 | Flex Sensor A High Pre-Alm |
| 85 | Flex Sensor A Low Alarm |
| 86 | Flex Sensor A Low Pre-Alm |
| 87 | Flex Sensor A OC |
| 88 | Flex Sensor B High Alarm |
| 89 | Flex Sensor B High Pre-Alm |
| 90 | Flex Sensor B Low Alarm |
| 91 | Flex Sensor B Low Pre-Alm |


| (Table 44, contd) |
| :--- |


| 92 | Flex Sensor B OC |
| :---: | :---: |
| 93 | Flex Sensor C High Alarm |
| 94 | Flex Sensor C High Pre-Alm |
| 95 | Flex Sensor C Low Alarm |
| 96 | Flex Sensor C Low Pre-Alm |
| 97 | Flex Sensor C OC |
| 98 | Flex Sensor D High Alarm |
| 99 | Flex Sensor D High Pre-Alm |
| 100 | Flex Sensor D Low Alarm |
| 101 | Flex Sensor D Low Pre-Alm |
| 102 | Flex Sensor D OC |
| 103 | Fuel Level High Alarm |
| 104 | Fuel Level High Pre-Alm |
| 105 | Fuel Level Low Alarm |
| 106 | Fuel Level Low Pre-Alm |
| 107 | Fuel Pump Control |
| 108 | Fuel Relay |
| 109 | Fuel Sensor OC |
| 110 | Fuel Tank Bund Level High |
| 111 | Fuel Usage Alarm |
| 112 | Gas Choke ON |
| 113 | Gas Ignition |
| 114 | Gen Loading Freq Not Reached |
| 115 | Gen Loading Volts Not Reached |
| 116 | Gen Hi Freq Overshoot Alm |
| 117 | Gen Hi Freq Overshoot Wng |
| 118 | Gen Available |
| 119 | Gen Closed Aux |
| 120 | Gen Excite |
| 121 | Gen High Volts Alarm |
| 122 | Gen High Volts Warning |
| 123 | Gen High Volts Shutdown |
| 124 | Gen Load Inhibit |
| 125 | Gen Low Volts Alarm |
| 126 | Gen Low Volts Warning |
| 127 | Gen High Frequency Alarm |
| 128 | Gen High Frequency Delayed Alarm |

(Table 44, contd)

| Output Sources |  |
| :---: | :---: |
| 129 | Gen High Frequency Delayed Warning |
| 130 | Gen Ph Rotation Alarm |
| 131 | Gen Reverse Power |
| 132 | HEST Active |
| 133 | High Coolant Temp E Trip |
| 134 | High Coolant Temperature Shutdown |
| 135 | High Coolant Temperature Warning |
| 136 | High Inlet Temperature Shutdown |
| 137 | High Inlet Temperature Warning |
| 138 | Inhibit Schedule Run |
| 139 | kW Overload Alarm |
| 140 | Lamp Test |
| 141 | Load Freq Not Reached |
| 142 | Load Volts Not Reached |
| 143 | Loss of MPU Signal |
| 144 | Louvre Control |
| 145 | Low Coolant Temp |
| 146 | Low Load |
| 147 | Low Oil Pressure Sdn |
| 148 | Low Oil Pressure Wng |
| 149 | Main Configuration Selected |
| 150 | Mains Closed Aux |
| 151 | Mains Failure |
| 152 | Mains High Freq |
| 153 | Mains High Volts |
| 154 | Mains Load Inhibit |
| 155 | Mains Low Freq |
| 156 | Mains Low Volts |
| 157 | Mains Ph Rotation Alarm |
| 158 | Maintenance Alarm 1 Due |
| 159 | Maintenance Alarm 2 Due |
| 160 | Maintenance Alarm 3 Due |
| 161 | Manual Restore Contact |
| 162 | MPU Open Circuit |
| 163 | Negative Ph Sequence Alm |
| 164 | Oil Pressure Sensor OC |
| 165 | Oil Pressure Switch |
| 166 | Open Gen Output |
| 167 | Open Gen Pulse |

(Table 44, contd)

| Output Sources |  |
| :---: | :---: |
| 168 | Open Mains Output |
| 169 | Open Mains Pulse |
| 170 | Over Current IDMT Alarm |
| 171 | Over Current Imm Warning |
| 172 | Over Frequency Runaway |
| 173 | Over Frequency Warning |
| 174 | Over Speed Runaway |
| 175 | Over Speed Shutdown |
| 176 | Over Speed Warning |
| 177 | Overspeed Delayed Alarm |
| 178 | Overspeed Delayed Wng |
| 179 | Overspeed Overshoot Alarm |
| 180 | Overspeed Overshoot Wng |
| 181 | Preheat During Preheat Timer |
| 182 | Preheat Until Crank End |
| 183 | Preheat Until End Of Safety |
| 184 | Preheat Until End Of Warming |
| 185 | Protections Disabled |
| 186 | Remote Control 1 |
| 187 | Remote Control 10 |
| 188 | Remote Control 2 |
| 189 | Remote Control 3 |
| 190 | Remote Control 4 |
| 191 | Remote Control 5 |
| 192 | Remote Control 6 |
| 193 | Remote Control 7 |
| 194 | Remote Control 8 |
| 195 | Remote Control 9 |
| 196 | Remote Start Off Load |
| 197 | Remote Start On Load |
| 198 | Reset Maintenance 1 |
| 199 | Reset Maintenance 2 |
| 200 | Reset Maintenance 3 |
| 201 | Scheduled Auto Start Inhibit |
| 202 | SCR Inducement |
| 203 | Screensaver Active |
| 204 | Shutdown Blocked |
| 205 | Simulate Auto Button |

(Table 44, contd)

| Output Sources |  |
| :--- | :--- |
| 206 | Simulate Close Gen |
| 207 | Simulate Lamp Test |
| 208 | Simulate Mains Available |
| 209 | Simulate Manual |
| 210 | Simulate Open Gen |
| 211 | Simulate Start |
| 212 | Simulate Stop |
| 213 | Simulate Test On Load |
| 214 | Smoke Limiting |
| 215 | Start Relay |
| 216 | Stop And Panel Lock |
| 217 | System In Auto Mode |
| 218 | System In Man Mode |
| 219 | System In Stop Mode |
| 220 | System In Test Mode |
| 221 | Telemetry Active |
| 222 | Telemetry Data Active |
| 223 | Temp Sensor OC |
| 224 | Low Frequency Alarm |
| 225 | Low Frequency Warning |
| 226 | Low Speed Alarm |
| 227 | Low Speed Warning |
| 228 | Wait For Man Restore |
| 229 | Water in Fuel |
|  |  |
| 2 |  |
| 2 |  |

## Running Configuration Editor

## Accessing Running Configuration Editor

Running editor may be accessed during generator set operation. Press and hold center navigation button (15) to access the "Running Editor" .

## Entering PIN

Note: Entering PIN is not set by Caterpillar when the module leaves the factory. If the code has been "lost" or "forgotten", the module must be replaced.

Note: PIN is automatically reset when the editor is exited (manually or automatically) to ensure security.

The PIN is not requested while accessing the running editor even if a module security PIN has been set.

## Editing Parameter

Note: Pressing and holding menu navigation button (15) provide auto-repeat functionality. Long press the buttons to change the values quickly.

Follow the below procedure to edit a parameter:

1. Select the configuration to be edited by pressing up or down menu navigation button (15).
2. Press left or right menu navigation button (15) to cycle to the section to view or change.
3. Press up or down menu navigation button (15) to select the parameter within the current selected section to view or change.
4. Press center menu navigation button(15) to enter edit mode. The parameter begins to flash to indicate editing.
5. Press up or down menu navigation button (15) to change the parameter to the required value.
6. Press center menu navigation button (15) to save the value. The parameter ceases flashing to indicate that the parameter has been saved.

## Exiting Running Configuration Editor

Note: To ensure security, the editor automatically exits after 5 minutes of inactivity.

Press and hold center menu navigation button (15) to exit the editor, and save the changes.

## Running Editor Parameters

Table 45

| Section | Parameter | Values |
| :---: | :---: | :---: |
| Module | Contrast | $\%$ |
|  | Language | English / Other |
|  | Manual Frequency Trim | 0.0 Hz |
|  | Speed Bias | 0.0 Unit |
|  | Governor Gain | 0.0 |
|  | Frequency Adjust | 0.0 Hz |
|  | DPF Auto Regen Inhibit |  |
|  | DPF Manual Regen Request |  |
|  | ECU Service Mode |  |

## Commissioning

## Basic Checks

Note: Link the input to DC positive if emergency stop feature is not required.

Perform the following checks before starting the system:

- The unit is adequately cooled and all the wiring to the module is of standard and rating compatibility with the system.
- All mechanical parts are correctly fitted and that all electrical connections (including Earths) are in good condition.
- The unit DC supply is fused and connected to battery and that the unit is of correct polarity.
- The emergency stop input is wired to an external "Normally closed" switch connected to the DC positive.

Note: To check the start cycle operation, prevent the engine from starting by disabling the operation of the fuel solenoid. Connect the battery supply after visual inspection. Press manual mode button (22) followed by the start button (25) until the start sequence commences.

The starter engages and operates for a pre-set crank period. After the starter motor has attempted to start the engine for a pre-set number of attempts, the LCD displays "Failed to Start". Press stop/reset button (20) to reset the unit.

Restore the engine to operational status (reconnect the fuel solenoid). Press manual mode button (22) followed by start button (25). The engine should start and the starter motor should disengage automatically. The engine is fully operational and the fuel solenoid is operating if the engine does not start and the starter motor does not disengage automatically.

The engine should run at rated speed. If the engine does not run at the rated speed and an alarm is present, check if the alarm is valid and the check input wiring. The engine should continue to run for an indefinite period. The engine and alternator parameters can be viewed when the engine is running. Refer to Section "Description of Controls". Press auto mode button (23). The engine runs for a pre-set cooling down period, then stops.

The generator should stay in the standby mode. If generator does not stay in the standby mode, check if the remote start input is not active. Initiate an automatic start by supplying a remote start signal, if configured. The start sequence should commence and the engine should run up to the rated speed.

Once the generator is available, the delayed load outputs activate and the generator should accept the load. If the generator does not accept the load, check the wiring to the delayed load output contactors. Verify that the warning timer has timed out.

Remove the remote start signal. The return sequence begins. Generator unloads after a pre-set time. The generator should run for a pre-set period and then shutdown into standby mode. Set the internal clock/ calendar of the modules to ensure correct operation of the scheduler and event logging functions. Refer to Section "Front Panel Configuration" for details of the procedure.

Note: Check the connections between the controller and the customer system. Contact Caterpillar Dealer Solution Network (DSN), if the unit does not function as stated previously, after checking.

## CAN Interface Specification (SAE J193975)

Use ECU port for live operational communications between Cat GCCP 1.2/1.3 and other CAN enabled devices. The below specification details all broadcast messages which are transmitted when SAE J1939-75 is enabled and the relevant engine file is selected.
Table 46

| Parameter | Description |
| :---: | :--- |
| Protocol | SAE J1939 with PGNs as listed in the following <br> subsections. |
| Bill Rate | $250 \mathrm{~kb} / \mathrm{s}$ |
| Isolation | $\pm 2.5 \mathrm{kV}_{\text {rms }}$ |
| Termination | $120 \Omega$ termination resistor, with the option for <br> direct PCB installation. |

## Instrumentation and Control

## Broadcast Messages SAE J1939-75

Note: All configurable broadcast CAN messages are priority 3 by default. Priority of the messages cannot be changed.
The parameter groups under Section
"Instrumentation and Control" are broadcasted by Cat GCCP 1.2/1.3.

Note: SPNs that are not implemented in Cat GCCP 1.2/1.3 have all bits set to " 1 ".

Note: "PDU Format" and "PDU Specific" are shown in Hexadecimal.

Note: Values larger than 8 bits utilize "Little-Endian" format. A 16 -bit value occupying 2 bytes have "Byte1" as the most significant byte and "Byte2" as the least significant byte.

PGN 64913

Table 47

| Priority | Extension Data <br> Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | 91 | 8 bytes | 250 ms |

Table 48

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| ODD9 | 3545 | Generator Breaker Status - Indicates measured state of the generator circuit breaker. | Byte 1 Bits 1 to 3 | 000: Open <br> 001: Closed <br> 010: Locked Out <br> 011-101: Available <br> for SAE <br> assignment <br> 110: Error <br> 111: Not available | 0 | N/A |
| ODDA | 3546 | Utility Circuit Breaker - Indicates the measured state of the utility circuit breaker. | Byte 1 <br> Bits 4 to 6 | 000: Open <br> 001: Closed <br> 010: Locked Out <br> 011-101: Available <br> for SAE <br> assignment <br> 110: Error <br> 111: Not available | 0 | N/A |

## GC1-Generator Control 1

PGN 64915

Table 49

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | 93 | 8 bytes | 100 ms |

Table 50

| SPN |  |  | Byte / Bit | Scaling | Offset |
| :---: | :---: | :--- | :--- | :--- | :---: |
| Hex | Decimal |  | Unit |  |  |
| ODEF | 3567 | Generator Control Not in Automatic Start <br> to start <br> State - Indicates whether the generator set <br> is in a condition to start up automatically and <br> provide power. <br> The parameter remains in the active state if <br> the generator does not automatically start up <br> and power up. | Byte 1 <br> Bits 4 to 5 | 01: Active (not <br> ready to start <br> automatically) <br> 10: Error <br> 11: Not available | 0 |

## GAAC - Generator Average Basic AC Quantities

## PGN 65030

Table 51

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | 6 | 8 bytes | 100 ms |

Table 52

| SPN |  |  | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| 0988 | 2440 | Generator Average L-L AC Voltage | Byte 1 to 2 | 1 | 0 | V |
| 098 C | 2444 | Generator Average L-N AC Voltage | Byte 3 to 4 | 1 | 0 | V |
| 0984 | 2436 | Generator Average AC Frequency | Byte 5 to 6 | $1 / 128 \mathrm{~Hz} / \mathrm{bit}$ | 0 | Hz |
| 0990 | 2448 | Generator Average AC RMS Current | Byte 7 to 8 | 1 | 0 | A |

GPAAC - Generator Phase A Basic AC Quantities
PGN 65027

Table 53

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | 3 | 8 bytes | 100 ms |

Table 54

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| 0985 | 2437 | Generator Phase A AC Frequency | Byte 5 to 6 | 128 | 0 | V |
| 0989 | 2441 | Generator Phase A Line AC RMS Voltage | Byte 1 to 2 | 1 | 0 | V |
| 098D | 2445 | Generator Phase A Line Neutral AC RMS Voltage | Byte 3 to 4 | 1 | 0 | A |
| 0991 | 2449 | Generator Phase A AC RMS Current | Byte 7 to 8 | 1 | 0 | Hz |

## GPAACP - Generator Phase A AC Power

## PGN 65026

Table 55

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | 2 | 8 bytes | 100 ms |

Table 56

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| 0993 | 2453 | Generator Phase A Real Power | Byte 1 to 4 | 1 | $-2^{*} 10^{9}$ | W |
| 099D | 2461 | Generator Phase A Apparent Power | Byte 5 to 8 |  |  |  |

GPAACR - Generator Phase A AC Reactive Power
PGN 65025
Table 57

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | 0 | 8 bytes | 100 ms |

Table 58

\left.| SPN |  |  | Instrument | Byte / Bit | Scaling | Offset |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |$\right)$ Unit

## GPBACP - Generator Phase B AC Power

## PGN 65023

Table 59

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | FF | 8 bytes | 100 ms |

Table 60

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| 0996 | 2454 | Generator Phase B Real Power | Byte 1 to 4 | 1 | $-2^{*} 10^{\circ}$ | W |
| 099E | 2462 | Generator Phase A Apparent Power | Byte 5 to 8 |  |  |  |

## GPBACR - Generator Phase B AC Reactive Power

PGN 65022
Table 61

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | FE | 8 bytes | 100 ms |

Table 62

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| 0996 | 2454 | Generator Phase B Reactive Power | Byte 1 to 4 | 1 | $-2^{*} 10^{\circ}$ | VAR |

## GPCAC - Generator Phase C Basic AC Quantities

PGN 65021
Table 63

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | FD | 8 bytes | 100 ms |

Table 64

| SPN |  |  | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Hex | Decimal |  | Instrument | Byte 5 to 6 | 0.078125 | 0 |
| 0987 | 2439 | Generator Phase C AC Frequency | 1 | 0 | Hz |  |
| $098 B$ | 2443 | Generator Phase B Line AC RMS Voltage | Byte 1 to 2 | V |  |  |
| 098 F | 2447 | Generator Phase B Line Neutral AC RMS <br> Voltage | Byte 3 to 4 | 1 | 0 | V |
| 0993 | 2451 | Generator Phase B AC RMS Current | Byte 7 to 8 | 1 | 0 | A |

## GPCACP - Generator Phase C AC Power

## PGN 65020

Table 65

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | FF | 8 bytes | 100 ms |

Table 66

| SPN |  |  | Instrument | Byte / Bit | Scaling | Offset |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Unit

## GPCACR- Generator Phase C AC Reactive Power

PGN 65019
Table 67

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | FB | 8 bytes | 100 ms |

Table 68

| SPN |  | Instrument | Byte $/$ Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| 099B | 2459 | Generator Phase C Reactive Power | Byte 1 to 4 | 1 | $-2^{\star} 10^{\circ}$ | VAR |

## GTACPP- Generator Total AC Percent Power

## PGN 64911

Table 69

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | 8 F | 8 bytes | 250 ms |

Table 70

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  | ( |  |  |  |
| $0 E 06$ | 3590 | Generator Total Percent kW as a percent- <br> age of rated power | Byte 1 to 2 | 0.0078125 | -251 | $\%$ |

## PGN 65018

Table 71

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | FA | 8 bytes | 100 ms |

Table 72

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| $0 E 06$ | 3590 | Generator Total kW Hours Export | Byte 1 to 4 | 1 | 0 | kWh |

## GTACER- Generator Total AC Reactive Energy

## PGN 64910

Table 73

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | 8 E | 8 bytes | 250 ms |

Table 74

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| $0 E 09$ | 3593 | Generator Total kVAr Hours Export | Byte 1 to 4 | 1 | 0 | kVARh |

## GTACP- Generator Total AC Power

PGN 65029
Table 75

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | 5 | 8 bytes | 100 ms |

Table 76

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| 0994 | 2452 | Generator Total Real Power | Byte 1 to 4 | 1 | $-2^{*} 10^{\circ}$ | W |
| 099C | 2460 | Generator Total Apparent Power | Byte 5 to 8 |  |  | VA |

## GTACR- Generator Total AC Power

## PGN 65028

Table 77

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | 4 | 8 | 100 ms |

Table 78

| SPN |  |  | Instrument | Byte / Bit | Scaling | Offset |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: | Unit

## Broadcast Messages Engine Instrumentation

Note: Availability of the engine instrumentation PGNs
depends upon the engine file selected within the configuration of Cat GCCP 1.2/1.3 control panel.

Dash Display (DD)
PGN 65276

Table 79

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | FC | 8 bytes | 1000 ms |

Table 80

| SPN |  |  | Instrument | Byte / Bit | Scaling |
| :---: | :---: | :---: | :---: | :---: | :---: | Offset | Unit |
| :---: |
| Hex |
| 060 |

## EC2- Engine Configuration 2

## PGN 64895

Table 81

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | $7 F$ | 8 bytes | Request |

Table 82

| SPN |  |  | Instrument | Byte / Bit | Scaling | Offset |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  | Unit |  |  |
| 0E56 | 3670 | Maximum Crank Attempts per Start Attempt | Byte 1 | 1 | 0 | N/A |

## EEC1-Engine Speed

## PGN 61444

Table 83

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | F0 | 4 | 8 bytes | 100 ms |

Table 84

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  | 0 | RPM |  |
| OBE | 190 | Engine Speed | Byte 4 to 5 | 0.125 | 0 |  |

## EEC4-Crank Attempt Count on Present Start

## Attempt

PGN 65214

Table 85

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | FB | 8 bytes | Request |

Table 86

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| 0E57 | 3671 | Crank Attempt Count on Present Start Attempt | Byte 6 | 1 | 0 | N/A |

EFL_P1 - Oil Pressure

## PGN 65263

Table 87

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | EF | 8 bytes | 500 ms |

Table 88

| SPN |  |  | Instrument | Byte / Bit | Scaling | Offset |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| 064 | 100 | Oil Pressure | Byte 4 | 4 | 0 | kPa |

## EOI - Emergency Stop

## PGN 64914

Table 89

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FD | 92 | 8 bytes | 250 ms |

Table 90

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal |  |  |  |  |  |
| OE17 | 3607 | Emergency Stop <br> 00: Off (No Shutdown Requested) <br> 01: On (Shutdown Requested) <br> 10: Reserved <br> 11: Do not care / take no action | Byte 6 Byte 6 to 8 | 1 | 0 | N/A |

ET1 - Coolant Temperature
PGN 65262

Table 91

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | EE | 8 bytes | 1000 ms |

Table 92

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal | Eygine Coolant Temperature | Byte 1 | 1 | -40 | ${ }^{\circ} \mathrm{C}$ |
| 06 E | 110 | Eng |  |  |  |  |

## Hours - Engine Hour Revolutions

PGN 65253

Table 93

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | E5 | 8 bytes | Request |

Table 94

| SPN |  | Instrument | Byte / Bit | Scaling | Offset | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Decimal | Engine Total Hours of Operation | Byte 1 to 4 | 0.05 | 0 | hr |
| OF7 | 247 | Eng |  |  |  |  |

## VEP1 - Vehicle Electrical Power

PGN 65271
Table 95

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0 | 0 | FE | F7 | 8 bytes | 1000 ms |

Table 96

| SPN |  | Instrument |  | Byte / Bit | Scaling | Offset |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |

## DM01 - Conditions Active Diagnostic Trouble Codes

Note: Availability of "Engine Alarm" SPN and FMI depends upon the engine file selected within the configuration of Cat GCCP 1.2/1.3 control panel.

Note: DM1 priority will remain as six if only one DM1 alarm is active. Priority will be seven if two or more DM1 alarms are active.

Table 97

| Priority | Ext Data Page | Data Page | PDU Format | PDU Specific | Size | Rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6 / 7$ | 0 | 0 | FE | CA | 8 bytes | 1000 ms |

Table 98

| SPN |  |  | Instrument | Byte / Bit | Scaling | Offset |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Hex | Decimal |  | Unit |  |  |  |
| 04BE | 1214 | Suspect Parameter Number | Byte 3 <br> Bits 1 to 19 |  |  |  |
| 04BF | 1215 | Failure Mode Identifier | Byte 5 <br> Bits 1 to 5 | 1 | N/A |  |
| 06AA | 1706 | SPN Conversion Method | Byte 6 <br> Bit 7 |  |  |  |

## DM1 Conditions

Table 99

| Key | Value |
| :---: | :---: |
| Low Fault- Least Severe | 17 |
| High Fault- Least Severe | 15 |
| Low Fault- Most Severe | 1 |
| High Fault- Most Severe | 0 |
| Erratic- Incorrect Data | 2 |

Table 100

| Generator Alarm Condition | SPN | Warning FMI | Shutdown FMI |
| :--- | :--- | :---: | :---: |
| Generator Average AC Frequency Under | 2436 | 17 | 1 |
| SPN Generator Average Line-Line AC RMS Voltage Over | 2436 | 15 | 0 |
| Generator Average Line-Line AC RMS Voltage Under | 2440 | 17 | 1 |
| Generator Average Line-Line AC RMS Voltage Over | 2440 | 15 | 0 |
| Generator Average Line-Neutral AC RMS Voltage Under | 2444 | 17 | 1 |
| Generator Average Line-Neutral AC RMS Voltage Over | 2444 | 15 | 0 |
| Generator Average AC RMS Current Over | 2448 | 15 | 0 |

Table 101

| Engine Alarm Condition | SPN | Warning FMI | Shutdown FMI |
| :--- | :---: | :---: | :---: |
| Fuel Level Low | 96 | 17 | 1 |
| Oil Pressure Low (Analogue Sensor) | 100 | 17 | 1 |
| Oil Pressure Low (Digital Input) | 100 | 17 | 1 |
| Oil Pressure Sensor Fault | 100 | 2 | 2 |
| Coolant Temperature High (Analogue Sensor) | 110 | 15 | 0 |
| Coolant Temperature High (Digital Input) | 110 | 15 | 0 |

(Table 101, contd)

| Engine Alarm Condition | SPN | Warning FMI | Shutdown FMI |
| :--- | :---: | :---: | :---: |
| Coolant Temperature Sensor Fault | 110 | 2 | 2 |
| Charge Alternator Failed | 167 | 17 | 1 |
| Plant Battery Voltage High | 168 | 15 | 0 |
| Plant Battery Voltage Low | 168 | 17 | 1 |
| Overspeed | 190 | 15 | 0 |
| Underspeed | 190 | 17 | 1 |

## Fault Finding

Note: Fault finding is provided as a guide check-list only. As the module can be configured to provide a wide range of different features, always refer to the source of the module configuration.

## Starting

Table 102

| Symptom |  |
| :--- | :--- |
| Unit is inoperative <br> Read/Write configuration does not operate | Check the battery and wiring to the unit. Check the DC supply. Check the DC fuse. |
| Unit shuts down | Ensure that the DC supply voltage is not above 35 V or below 9 VV. <br> Ensure that the operating temperature is not above $70^{\circ} \mathrm{C}$ (158 |
| Fail to start is activated after preset number of at- <br> tempts to start | Check the wiring of the fuel solenoid. Check fuel. Check the battery supply. <br> Check if battery supply is present at the fuel output of the module. <br> Check if speed-sensing signal is present at the inputs of the module. |
| Continuous starting of generator when in the Au- <br> to Mode | Ensure that there is no signal present at the remote start input. <br> Ensure that the configured polarity is correct. |
| Generator fails to start on receipt of "Remote signal | Check if start delay timer has timed out. <br> Check signal at the remote start input. Confirm that correct configuration of input is config- <br> ured as remote start. <br> Check if the oil pressure switch or sensor is indicating low oil pressure to the controller. <br> Depending upon the configuration, the set does not start if oil pressure is not low. |
| Preheat inoperative motor inoperative | Check the wiring to the engine heater plugs. <br> Check the battery supply. |
| Check if the battery supply is present at the pre-heat output of the module. |  |
| Check if pre-heat configuration is correct. |  |

## Loading

Table 103

| Symptom |  |
| :--- | :--- |
| Engine runs but generator does not take load | Check if warm up timer has timed out. |
| Ensure that the generator load inhibit signal is not present at the module inputs. |  |
| Check connections to the switching device. |  |, | Check is the engine is operating correctly. |  |
| :--- | :--- |
| Incorrect reading in engine gauges ${ }^{(1)}$ | Check if sensor is compatible with the module and that the module configuration is suited <br> to the sensor. |
| Fail to stop alarm when engine is at rest |  |

(1) Set does not take load in manual mode unless there is an active load signal.

Alarms
Table 104

| Symptom | Possible Remedy |
| :---: | :---: |
| "Oil Pressure Low" fault operates after engine has fired | Check engine oil pressure. <br> Check oil pressure switch/sensor and wiring. <br> Check configured polarity (if applicable) is correct (Normally Open or Normally Closed) or that sensor is compatible with the module and is correctly configured. |
| "Coolant Temperature High" fault operates after engine has fired | Check engine temperature. <br> Check switch/sensor and wiring. <br> Check configured polarity (if applicable) is correct (Normally Open or Normally Closed) or that sensor is compatible with the module. |
| "Shutdown" fault operates | Check the relevant switch and wiring of the fault indicated on the LCD display. |
| "Electrical Trip" fault operates |  |
| Warning fault operates | configuration of the inp |
| ECU Amber ECU Red | Indicates the fault condition detected by the engine ECU and transmitted to Cat GCCP 1.2/1.3 controller. |
| ECU Data Fail | Indicates failure of CAN data link to the engine ECU. <br> Check all wiring and termination resistors, if required. |
| Incorrect reading on engine gauges | Check if the engine is correctly operating. <br> Check if the sensor and wiring are paying particular attention to the wiring to terminal 14. |
| "Fail to Stop" alarm when engine is at rest | Check if the sensor is compatible with the module and that the module configuration is suited to the sensor. |

## Communications

Table 105

| Symptom | Possible Remedy |
| :--- | :--- |
| ECU Data Fail | Indicates failure of CAN data link to the engine ECU. <br> Check all wiring and termination resistors, if required. |

## Instruments

Table 106

| Symptom |  |
| :--- | :--- |
|  | Check if CT primary, CT secondary, and VT ratio settings are correct for the application. |
|  | Check if the CTs are wired correctly with regards to the direction of current flow (p1 and |
| p2, and $s 1$ and s2). Also ensure that the CTs are connected to the correct phase. |  |
| Inaccurate generator measurements on control- |  |
| ler display | Error occurs if CT1 is connected to phase 2. |
| Consider the power factor ( $\mathrm{kW}=\mathrm{kVA} \times$ power factor). |  |
|  | The controller is true RMS measuring and gives more accurate value when compared with <br> "averaging" meter such as an analog panel meter or lower specified digital multimeters. <br> Accuracy of the controller is better than $1 \%$ of full scale. Generator voltage full scale is <br>  <br> 415 V ph- N and accuracy is $\pm 4.15 \mathrm{~V}(1 \%$ of 415 V$)$. |

## Glossary of Terms

Table 107

| Term | Abbreviation | Description |
| :---: | :---: | :---: |
| $\begin{gathered} \text { Cat GCCP } \\ \text { 1.2/1.3 Con- } \\ \text { trol Panel } \end{gathered}$ | - | - |
| CAN | Controller Area Network | Vehicle standard to allow digital devices communicate to one another. |
| CDMA | Code Division Multiple Access | Cell phone access used in some areas including part of USA and Australia. |
| CT | Current Transformer | An electrical device that takes a large Alternating Current (AC), and scales down AC to a smaller current by a fixed ratio. |
| BMS | Building Management System | A digital/computer based control system for the infrastructure of a building. |
| DEF | Diesel Exhaust Fluid | A consumable liquid used in Selective Catalytic Reduction process (SCR process) to lower nitric oxide, and nitrogen dioxide concentration in engine exhaust emissions. |
| DM1 | Diagnostic Message 1 | A DTC is active on the engine ECU. |
| DM2 | Diagnostic Message 2 | A DTC was previously active on the engine ECU and has been stored in the internal memory of the ECU. |
| DPF | Diesel Particulate Filter | A filter fitted to the exhaust of an engine to remove diesel particulate matter or soot from the exhaust gas. |
| DPTC | Diesel Particulate Temperature Controlled Filter | A filter fitted to the exhaust of an engine to remove diesel particulate matter or soot from the exhaust gas which is temperature controlled. |
| DTC | Diagnostic Trouble Codes | Fault code sent by an engine ECU. |
| ECU/ECM | Engine Control Unit/Engine Control Management | An electronic device that monitors engine parameters and regulates fueling. |
| FMI | Failure Mode Indicator | A part of DTC that indicates the type of failure. For example high, low, open circuit. |
| SAE J1939 | Society of Automotive Engineers SAE J1939 | Vehicle bus recommended practice for communication and diagnostics among vehicle components. |

(Table 107, contd)

| Term | Abbreviation | Description |
| :---: | :--- | :--- |
| $\begin{array}{c}\text { SAE J1939- } \\ 75\end{array}$ | - | $\begin{array}{l}\text { Sub section of SAE J1939 standard. The parameters and pa- } \\ \text { rameter groups contained in this sub section are predomi- } \\ \text { nantly associated with generators and driven equipment in } \\ \text { electric power generation and industrial applications. }\end{array}$ |
| GSM | Global System for Mobile communications | Cell phone technology used in most part of the World. |
| HEST | High Exhaust System Temperature | $\begin{array}{l}\text { Initiates when DPF filter is full with an extra fuel injector in the } \\ \text { exhaust system to burn off accumulated diesel particulate } \\ \text { matter or soot. }\end{array}$ |
| HMI | Human Machine Interface | $\begin{array}{l}\text { A device that provides a control and visualization interface } \\ \text { between a human and a process or machine. }\end{array}$ |
| IDMT | Inverse Definite Minimum Time | - |
| MSC | Multi-Set Communication | - |
| OC | Occurrence Count | $\begin{array}{l}\text { A part of DTC that indicates the number of times a failure has } \\ \text { occurred. }\end{array}$ |
| PGN | Parameter Group Number | $\begin{array}{l}\text { A CAN address for a set of parameters that relate to the same } \\ \text { topic and share transmission rate. }\end{array}$ |
| PLC | Programmable Logic Controller | $\begin{array}{l}\text { A programmable digital device used to create logic for a spe- } \\ \text { cific purpose. }\end{array}$ |
| SCADA | Supervisory Control And Data Acquisition | $\begin{array}{l}\text { A system that operates with coded signals over communica- } \\ \text { tion channels to provide control and monitoring of remote } \\ \text { equipment. }\end{array}$ |
| SMS | Short Message Service | $\begin{array}{l}\text { A process that uses DEF with aid of a catalyst to convert nitric } \\ \text { oxide and nitrogen dioxide into nitrogen and water to reduce } \\ \text { engine exhaust emission. }\end{array}$ |
| SPN | Suspect Parameter Number | $\begin{array}{l}\text { A small card supplied by the GSM/CDMA provider. This card } \\ \text { is inserted into the ell phone, GSM modem, or DSE gateway } \\ \text { device to give GSM/GPRS (General Packet Radio Service) } \\ \text { connection. }\end{array}$ |
| SIM | Subscriber Identity Module | $\begin{array}{l}\text { The text messaging service of mobile/cell phones. }\end{array}$ |
| A part of DTC that indicates failure. Examples of failure are oil |  |  |
| pressure, coolant temperature, turbo pressure, and so on. |  |  |$\}$

M0114493 ©2021 Caterpillar All Rights Reserved

CAT, CATERPILLAR, LET'S DO THE WORK, their respective logos, "Caterpillar Corporate Yellow", the "Power Edge" and Cat "Modern Hex" trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

# Special Instruction 

## GCCP 1.2 Battery Charger Operator Manual

RG31-Up<br>S341-Up<br>RG41-Up<br>S351-Up<br>RG51-up<br>S361-up<br>RE31-Up<br>S441-Up<br>RE41-Up<br>S651-Up<br>RK51-Up<br>S371-Up

## TABLE OF CONTENTS

Section
Page
1 SPECIFICATIONS ..... 3
1.1 COMMON ELECTRICAL SPECIFICATIONS ..... 3
1.2 COMMUNICATION PORT USAGE ..... 4
1.2.1 USB CONNECTION ..... 5
1.2.2 RS485 ..... 5
1.2.2.1 MODBUS RTU ..... 5
1.2.2.2 DSENET ..... 6
1.3 OUTPUT SPECIFICATIONS ..... 6
1.3.1 CAT GCCP 1.2 BATTERY CHARGER $24 \mathrm{~V} / 12 \mathrm{~V}, 10 \mathrm{~A}$ ..... 6
1.4 DIMENSIONS AND MOUNTING ..... 8
1.4.1 CAT GCCP 1.2 BATTERY CHARGER $24 \mathrm{~V} / 12 \mathrm{~V}, 10 \mathrm{~A}$ ..... 8
1.5 APPLICABLE STANDARDS ..... 9
2 INSTALLATION ..... 9
2.1 BATTERY SUITABILITY ..... 9
2.2 USER CONNECTIONS ..... 9
2.2.1 CAT GCCP 1.2 BATTERY CHARGER ..... 10
3 INDICATIONS ..... 11
3.1 CAT GCCP 1.2 BATTERY CHARGER ..... 11
3.1.1 STATUS ..... 11
3.1.2 CHARGE MODE ..... 11
3.1.3 FAULT CONDITIONS ..... 11
4 OPERATION ..... 11
4.1 OPERATION OF CAT GCCP 1.2 BATTERY CHARGER ..... 11
4.2.1 PROTECTION ..... 12
4.2.1.1 SHUTDOWN ALARMS ..... 12
4.2.1.2 USER CONFIGURABLE ALARMS ..... 12
4.2.2 DIGITAL INPUT ..... 13
4.2.3 VOLTAGE ADJUSTMENT POTENTIOMETER ..... 13
4.2.4 PSU MODE ..... 13
4.2.5 CHARGE MODE ..... 14
4.2.5.1 BULK CHARGE ..... 14
4.2.5.2 ABSORPTION. ..... 14
4.2.5.3 FLOAT CHARGE ..... 15
4.2.5.4 STORAGE. .....  15
4.2.5.5 CHARGE TERMINATION ..... 15
4.2.5.6 CHARGE TIME. ..... 15
4.2.5.7 MANUAL BOOST ..... 15
4.2.6 TEMPERATURE COMPENSATION ..... 16
5 FAULT DIAGNOSIS ..... 16
6 MAINTENANCE, SPARES, REPAIR AND SERVICING ..... 16
7 DISPOSAL ..... 16
7.2 WEEE (WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT) ..... 16
8 CAT GCCP 1.2 BATTERY CHARGER INSTALLATION INSTRUCTIONS ..... 17

## 1 SPECIFICATIONS

### 1.1 COMMON ELECTRICAL SPECIFICATIONS

| Parameter |  |  |
| :--- | :--- | :---: | :---: | :---: |
| AC Input Voltage (V) <br> CAT CGCCP 1.2 24 $/ 12 \mathrm{~V} \mathrm{10} \mathrm{A}$ | Nominal |  |
| Operating <br> Temperature | CAT GCCP 1.2 <br> BATTERY <br> CHARGERCAT <br> GCCP <br> BATTERY <br> CHARGER | $-30^{\circ} \mathrm{C}$ |

Continued overleaf

| Parameter | Min |  | Nominal | Max |
| :--- | :--- | :--- | :--- | :--- |
| Efficiency \% <br> (See section entitled <br> 'output specifications' <br> elsewhere in this <br> manual) | CAT GCCP 1.2 <br> BATTERY <br> CHARGER |  | $>85 \%$ |  |
| Temperature Sensor <br> Input | CAT GCCP 1.2 <br> BATTERY <br> CHARGER |  | PT1000 |  |

## O NOTE: CAT GCCP 1.2 BATTERY CHARGERCAT GCCP 1.2 Battery Charger

### 1.2 COMMUNICATION PORT USAGE

| Communication | Specification |
| :---: | :--- |
| USB Port (CAT | USB2.0 Device for connection to PC running DSE Configuration Suite |
| GCCP 1.2 |  |
| BATTERY | Max distance 6 m (20 feet) |
| CHARGER only) |  |
|  | Isolated <br> Data connection 2 wire + common <br> Half Duplex |
| RS485 Serial | Data direction control for Transmit (by s/w protocol) <br> Port <br> (CAT GCCP 1.2 <br> BATTERY <br> CHARGER only) |
| Max Baud Rate 19200 <br> External termination required (120 $\Omega$ ) <br> Max common mode offset 70 V (on board protection transorb) <br> Max distance 1.2 km (3/4 mile) |  |
|  |  |

### 1.2.1 USB CONNECTION

The USB port is provided to give a simple means of connection between a PC and the CAT GCCP 1.2 BATTERY CHARGER series battery charger. Using the DSE Configuration Suite Software, the operator is then configure and monitor the state of the battery charger.

To connect a CAT GCCP 1.2 BATTERY CHARGER series battery charger to a PC by USB, the following items are required:

| - CAT GCCP 1.2 BATTERY CHARGER series battery charger |
| :--- |
| DSE Configuration Suite Software <br> (Supplied on configuration suite software CD or available from <br> www.deepseaelectronics.com). |
| USB cable Type A to Type B. <br> (This is the same cable as often used between a PC and a USB <br> printer) |

ONOTE: - Refer to CAT GCCP 1.2 BATTERY CHARGER Series Battery Charger PC
Software Configuration Manual for further details on configuring and monitoring.

### 1.2.2 RS485

The RS485 port on the CAT GCCP 1.2 BATTERY CHARGER series battery chargers has three uses.

1) Support the Modbus RTU protocol for connection to a Modbus RTU Masterdevice.
2) Supporting the DSENet® connection with the supported modules.

### 1.2.2.1 MODBUS RTU

RS485 is used for point-to-point cable connection of more than one device (maximum 32 devices) and allows for connection to PCs, PLCs and Building Management Systems (to name just a few devices).

Using the DSE Configuration Suite PC Software, Configurable Gencomm is used to map instrumentation to modbus registers.

One advantage of the RS485 interface is the large distance specification ( 1.2 km ) when using Belden 9841 (or equivalent) cable. This allows for a large distance between the CAT GCCP 1.2 BATTERY CHARGER series battery charger and a PC running the DSE Configuration Suite software. The operator is then able to view the various operating parameters.

### 1.2.2.2 DSENET

The DSE Intelligent Battery Chargers RS485 port can be configured as DSENet® using the CAT GCCP 1.2 Configuration Suite PC Software to allow the CAT GCCP 1.2 Intelligent Battery
Chargers' information (Instruments and Status) to be viewed on the Genset controller's display.
At the time of writing this manual, the following CAT GCCP 1.2 Intelligent Battery Chargers support the DSENet ${ }^{\circledR}$ communication on their RS485 port:

CAT GCCP 1.2 BATTERY CHARGER

### 1.3 OUTPUT SPECIFICATIONS

### 1.3.1 CAT GCCP 1.2 BATTERY CHARGER 24 V I 12 V, 10 A

- NOTE: CAT GCCP 1.2 is factory configured to 24 V 10 A . If required, voltage and current levels can be user configured via CAT GCCP 1.2 Configuration Suite PC Software.

| Parameter | Min | Nominal | Max | Comments |
| :--- | :---: | :---: | :--- | :--- |
| Output Voltage (24 V DC Battery) | 26.7 V | 27 V | 29 V |  |
| Output Charging Current (A) | 2 A | 10 A | 11 A |  |
| Current limit threshold (A) |  | 10 A | 11 A |  |
| Recovery from current limit (A) | 10 A |  | 11 A |  |
| Full load AC input current (A) |  |  | 2.3 A | At Vin=230 V, Vo=28.8 V, Io=10 A |
| Full load AC input current (A) |  |  | 4 A | At Vin=110 V, Vo=28.8 V, Io=10 A |
| AC Input Inrush current (A) |  | 60 A |  | For 10 ms |

CAT GCCP 1.2 BATTERY CHARGER Efficiency Curve at 10 A


CAT GCCP 1.2 BATTERY CHARGER
Temperature Derate Curve 110 V < Vin < 305 V


CAT GCCP 1.2 BATTERY CHARGER
Temperature Derate Curve 95 V $<$ Vin < 110 V


### 1.4 DIMENSIONS AND MOUNTING

### 1.4.1 CAT GCCP 1.2 BATTERY

NOTE: This battery charger is designed to be mounted with the base to a vertical surface with the terminal strips at the bottom.

| Parameter | Comment |
| :--- | :--- |
| Overall size $(\mathrm{mm})$ | $205 \mathrm{~mm} \times 135 \mathrm{~mm} \times 80 \mathrm{~mm}$ <br> $\left(8.0^{\prime \prime} \times 5.3^{\prime \prime} \times 3.1^{\prime \prime}\right)$ |
| Weight | 0.78 kg |
| Mounting type | DIN rail or chassis mounting |
| Din rail type | EN 50022 35 mm type only |
| Mounting holes | Suitable for M 4 |
| Mounting hole centers | $190 \mathrm{~mm} \times 120 \mathrm{~mm}$ |
| $\left(7.5^{\prime \prime} \times 4.7^{\prime \prime}\right)$ |  |
| Input voltage (nominal) | 110 V to 277 V |
| Input voltage (absolute range) | 95 V to 305 V |
| Charge failure relay rating | 3 A DC resistive |
| 30 V maximum |  |
|  | $-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ with de rating |
|  | $\left(-22^{\circ} \mathrm{F}\right.$ to $185^{\circ} \mathrm{F}$ with de rating) |



### 1.5 APPLICABLE STANDARDS

| BS EN 60529 <br> (Degrees of protection <br> provided by enclosures) | IP20 |
| :--- | :--- |
|  | Protected against penetration by solid objects with a diameter of more <br> than 12 mm . Fingers or similar objects prevented from approach. <br> No protection against water |
| UL508 <br> NEMA rating | Enclosure type 1 <br> Provides a degree of protection against contact with the enclosure <br> equipment and against a limited amount of falling dirt |

In line with our policy of continual development, Deep Sea Electronics, reserve the right to change specification without notice.

## 2 INSTALLATION

> © Note: cat cgap 1.2 Battery Chargers should only be used to charge one battery bank at a time. It is not recommended to parallel batteries as the tolerance of the batteries leads to imbalance in their charging.

The CAT GCCP 1.2 battery charger is designed to be mounted within a control panel, on the panel DIN rail utilizing the integral mounts or on a chassis utilizing the mounting holes. For dimension and mounting details, see the section entitled Specification, Dimensions elsewhere in this document.

The CAT GCCP 1.2 battery charger is fit-and-forget. It can be permanently connected to the supply and the load, with no requirement to disable the charger during times of heavy load (such as engine cranking) or when the generator is running (even when a DC charging alternator is fitted).

### 2.1 BATTERY SUITABILITY

The standard charger is factory set by DSE to suit Lead Acid batteries but can be adjusted at the time of ordering to suit other battery types. Care should be taken to ensure the batteries connected to the charger are of the correct 'technology' to suit the setting of the charger.
For details of other supported battery types and float voltages see the section entitled Specifications, Part Numbering elsewhere in this document.

### 2.2 USER CONNECTIONS

| Parameter | Comment |  |
| :--- | :--- | :--- |
| Connection type | Screw terminal, rising clamp, no internal spring |  |
| Min cable size | $0.5 \mathrm{~mm}^{2}(\mathrm{AWG} \mathrm{20})$ |  |
| Max cable size | $2.5 \mathrm{~mm}^{2}(\mathrm{AWG} \mathrm{10})$ |  |
| Recommended AC fuse | $\mathbf{2 3 0}$ V AC Input | $\mathbf{1 1 0}$ V AC Input |
| CAT GCCP $1.224 \mathrm{~V} / 12 \mathrm{~V} 10$ A charger | 3.5 A anti-surge | 6.3 A anti-surge |

[^1]
### 2.2.1 CAT GCCP 1.2 BATTERY CHARGER

Connector A

| Termina <br> $\mathbf{l}$ | Function | Recommended <br> size |  |
| :---: | :---: | :---: | :--- |
| $-O P$ | Load negative | $2.5 \mathrm{~mm}^{2}($ AWG 10 $)$ | Battery negative terminal |
| + OP | Load Positive | $2.5 \mathrm{~mm}^{2}$ (AWG 10) | Battery positive terminal |

## Connector B

| Termina I | Function | $\begin{aligned} & \text { Recommended } \\ & \text { size } \end{aligned}$ | Comments |
| :---: | :---: | :---: | :---: |
| LK1 | Configurable Input | $1 \mathrm{~mm}^{2}$ (AWG 16) | Connect the terminals together to activate the input. <br> *The Factory Setting for the digital input provides a selection of $12 \mathrm{~V} / 24 \mathrm{~V}$ operation. <br> Customer configurable using CAT GCCP 1.2 <br> Configuration Suite PC Software. |
| LK1 | Configurable Input (OV) | $1 \mathrm{~mm}^{2}$ (AWG 16) |  |
|  |  |  | NOTE: Digital Input <br> Not Fitted to CAT GCCP 1.2 |
| NC | Normally Closed Contact of the Charge failure relay | 0.5 mm² (AWG 22) | De-energizes Under Charge Fail Conditions |
| COM | Charge failure relay Contact Common | 0.5 mm² (AWG 22) |  |
| NO | Normally Open Contact of the Charge failure relay | 0.5 mm² (AWG 22) |  |

Connector $\mathbf{C}$

| Terminal | Function | Recommended size | Comments |
| :---: | :---: | :---: | :---: |
| SCR | RS485 screen | $0.5 \mathrm{~mm}^{2}$ (AWG20) | Use only $120 \Omega$ RS485 approved cable |
| A | RS485 -ve | $0.5 \mathrm{~mm}^{2}$ (AWG20) | Use only $120 \Omega$ RS485 approved cable |
| B | RS485 +ve | $0.5 \mathrm{~mm}^{2}$ (AWG20) | Use only $120 \Omega$ RS485 approved cable |
| NTC | PT1000 connection | $0.5 \mathrm{~mm}^{2}$ (AWG20) | Use only PT1000 |
|  | NTC | terminals | $0.5 \mathrm{~mm}^{2}$ (AWG20) |

Connector D

| Terminal | Function | Recommended Size |
| :---: | :---: | :---: |
| $\underline{L}$ | Earth | $1 \mathrm{~mm}^{2}$ (AWG 16) |
| N | AC Neutral | $1 \mathrm{~mm}^{2}$ (AWG 16) |
| L | AC Live | $1 \mathrm{~mm}^{2}$ (AWG 16) |

## 3 INDICATIONS

### 3.1 CAT GCCP 1.2 BATTERY CHARGER

### 3.1.1 STATUS

| LCondition | OPE | LED Designation |  |  |
| :--- | :---: | :---: | :---: | :---: |
| FAULT1 |  |  |  |  | FAULT2

### 3.1.2 CHARGE MODE

| Mode | LED Designation <br> OPE |
| :--- | :---: |
| Bulk Charge in Progress | Yellow Constant |
| Absorption Charge in Progress | Yellow Flashing |
| Float Charge in Progress | Green Constant |
| Storage Charge in Progress | Green Flashing |

### 3.1.3 FAULTCONDITIONS

| Condition | LED Designation |  |
| :---: | :---: | :---: |
|  | FAULT1 | FAULT2 |
| High Output Voltage (DC) | Red Constant | Off |
| High / Low Input Voltage (AC) or High Output Current (DC) | Red Flashing | Off |
| High Ambient / Charger Temperature, High Battery Temperature (if enabled) | Off | Red Constant |
| Short Circuit/ Reverse Polarity (DC Output Connection) | Off | Red Flashing |

## 4 OPERATION

### 4.2 OPERATION OF CAT GCCP 1.2 BATTERY CHARGER

The CAT GCCP 1.2 BATTERY CHARGER MKII Series battery charger can be used as a battery charger, DC power supply, or both at the same time. For instance, the unit can be used to power the generator control panels and charge the panel batteries or starter batteries at the same time.

With no AC input to the charger, the Fault relay is in its inactive state. This volts-free change over relay can be used to provide indication of alarms as detailed in the Protection section below. When a suitable AC supply is connected, operation of the unit will depend upon the load connected to the unit's output terminals:

### 4.2.1 PROTECTION


#### Abstract

OnOTE: The Fault Relay is configured by default to change state upon any fault occurring. If required, using DSE Configuration Suite PC Software, the user can configure the Fault Relay to ignore all Mains Under/Over Voltage Warning or Mains Failure situations, while continuing to operate upon activation of any other alarm. Configuration Suite Manual.


Alarms fall into two categories:

- Shutdown Alarms, non-adjustable alarms.
- User Configurable Alarms, adjustable byDSE Configuration Suite PC Software.


### 4.2.1.1 SHUTDOWN ALARMS

Q NOTE: The Shutdown alarm are factory set and cannot be changed.

## O NOTE: When the AC supply source falls outside the hardware voltage limits, the DSE charger is instantly switched off for safety reasons, and the alarm is activated (Fault Relay Deenergizes).

```
OnOTE: The Fault Relay is configured by default to change state upon any fault occurring. If required, using DSE Configuration Suite PC Software, the user can configure the Fault Relay to ignore all Mains Under/Over Voltage Warning or Mains Failure situations, while continuing to operate upon activation of any other alarm.
```

Under the following conditions, the Fault Relay de-energizes to the normally closed state and charging is stopped (DC output is disabled) :
$\square \quad$ AC Power removed
$\square \quad$ AC Power outside the hardware limits (Minimum \& Maximum AC input voltage and frequency as detailed in the Common Electrical Specifications table for each specific charger)

- Battery temperature $>60^{\circ} \mathrm{C}$ (if temperature compensation is enabled)
- Battery Charger ambient temperature> $85^{\circ} \mathrm{C}$
$\square \quad$ DC output voltage $>110 \%$ of Boost Voltage
$\square \quad$ Short circuit / reverse polarity of the DC output.


### 4.2.1.2 USER CONFIGURABLE ALARMS

The following alarms are user configurable using DSE Configuration Suite PC Software. In each case, the Fault relay de-energizes.

## ONOTE: When a Shutdown Alarm is active at the same time as a User Configurable Alarm, the Shutdown Alarm takes priority and switches the charger off.

$\square$ DC Overcurrent alarm
DC Overvoltage alarm
Battery Temperature alarm. Activation of this alarm places the charger into Float mode.
Mains Over Voltage alarm. Activation of this alarm places the charger into Float mode.
Mains Under Voltage alarm. Activation of this alarm places the charger into Float mode.

### 4.2.2 DIGITAL INPUT

The CAT GCCP 1.2 BATTERY CHARGER series is fitted with a configurable digital input. Configuration is made using the DSE Configuration Suite PC Software.

The Factory Setting for the digital input provides a $12 \mathrm{~V} / 24 \mathrm{~V}$ selection function.

### 4.2.3 VOLTAGE ADJUSTMENT POTENTIOMETER

A manually operated potentiometer is provided to make small adjustments to the Boost Voltage without the requirement for the DSE Configuration Suite PC Software.
This is primarily intended to increase charger output to cater for voltage drop in long connection cables.

The potentiometer adjusts the boost voltage by up to $\pm 1.7 \mathrm{~V}$. This is subject to an absolute maximum of 29.5 V .

The table below shows the effect of the potentiometer on the boost voltage in the various charging modes.

| Charge Mode | Effect on boost voltage |
| :--- | :--- |
| Bulk | $100 \%$ of potentiometer setting |
| Absorption | $50 \%$ of potentiometer setting |
| Float | Potentiometer has no effect on Float Voltage |
| Storage | Potentiometer has no effect on Storage Voltage |

### 4.2.4 PSU MODE

If no battery is connected to the output terminals, the battery charger will operate as a $D C$ power supply only, current limit is factory set to 5 A, 10 A or 15 A and is adjustable (2 A - 10 A CAT GCCP 1.2 Battery Charger) using the DSE Configuration Suite PC Software. See the section entitled Specification elsewhere in this manual for further output specifications.

### 4.2.5 CHARGE MODE

## - NOTE: For details of Battery Charger Configuration, you are referred to DSE Publication: 057-159 CAT GCCP 1.2 BATTERY CHARGER Series Battery Charger Configuration Suite

## - NOTE: Should a 2-Stage charging profile be required, select a 3-Stage profile and configure Boost Voltage and Float Voltage to the same value.

Using DSE Configuration Suite PC Software, the battery charger is configured to use a 3Stage Charge, or 4 -Stage Charge, or 5 -Stage Charge profile as shown below. The description of each charge mode is given in the following sections.


3-Stage Charge Profile Configuration

5-Stage Charge Profile Configuration



4-Stage Charge Profile Configuration

### 4.2.5.1 BULK CHARGE

The battery charger operates in Constant voltage current limited mode.
The charger output voltage is maintained at a constant level (boost voltage) to allow the battery to charge while the load does not exceed the maximum rating of the charger.
If the load on the battery charger (battery charge demand+standing load) exceeds the maximum current rating of the charger, the charging current is limited to the maximum rating of the charger and the voltage is reduced.
The voltage will rise to the rated voltage again once the load drops below the maximum rating of the charger. This may occur naturally as the battery charges.
As the battery charges and the charge current drops below the Bulk to Absorption Trigger Level percentage, Absorption mode is entered. The default Bulk to Absorption Trigger Level is 75\%, configurable using the DSE Configuration Suite PC Software.

### 4.2.5.2 ABSORPTION

This mode is active for the duration of the Absorption Timer. This is adjustable using the DSE Configuration Suite PC Software.
Absorption mode is used to complete the charging process, bringing the battery to 100\% charged status.
After the Absorption timer, float charge mode is entered.

### 4.2.5.3 FLOAT CHARGE

The battery charger DC voltage is lowered to the configured float voltage.
Float Charge is used to provide a small amount of current to the battery, to overcome internal losses and keep the battery at its $100 \%$ charged state. The battery can be left in this mode indefinitely.

### 4.2.5.4 STORAGE

When configured to use a four-stage charging profile, a time limited storage charge is periodically entered (storage timer) to maintain the battery charge at optimum levels. This occurs at the level of the storage voltage. This is adjustable using the DSE Configuration Suite PC Software. When the storage timer expires, the charger re-enters the Absorption mode.

Additionally, this is used as an 'Automatic Boost' facility, to periodically attempt to remove sulfation from the battery plates.

### 4.2.5.5 CHARGE TERMINATION

When Charge Termination is enabled, the charger terminates the charging when the output current level decreases below the Charge Termination Threshold \% level, and the charger remains off for the Charge Termination Timer time before exiting this stage. The Charge Termination Threshold and the Charge Termination Timer are configured using the DSE Configuration Suite PC Software. The charger transfers back to the Bulk Stage when the Charge Termination Timer expires, or the output voltage drops below the Bulk Trigger Voltage level.

### 4.2.5.6 CHARGING TIME

Charge time is often of little consequence when the battery is used in a standby operation. An example of this is when the battery is used to supply the starting system of a diesel generator. During normal operation, the battery is at full capacity and the battery charger is used to maintain the float voltage of the battery. The battery is only drained when the generator is called to start. As the generator has a DC charging alternator fitted, the battery is quickly recharged when the generator is running. Should the generator stop before the battery is fully recharged, the CAT GCCP 1.2 BATTERY CHARGER MKII Series battery charger will continue to recharge the battery until it is fully charged.

Typically, a battery will charge from flat to $80 \%$ capacity in 16 hrs. when charged at C/10. For example, charging a 50 Ah battery for 16 hrs. at 5 A will charge the battery to $80 \%$ of its full capacity.
Remember to take into account any other standing load such as control panel requirements when calculating how much power is 'left' to charge the battery.

### 4.2.5.7 MANUAL BOOST

## O NOTE: The Digital Input must be configured to Manual Boost to provide this function.

Manual boost will place the charger into Bulk Charge mode, charging at the level of the boost voltage. A typical use of manual boost is with Lead Acid type batteries. When the battery is fully charged, placing the charger into boost mode will raise the output voltage. This has the effect of gassing the battery, helping to remove sulfation from the battery plates and helping the cells to equalize in voltage.

### 4.2.6 TEMPERATURE COMPENSATION

If temperature compensation is enabled through configuration, and remote temperature sensor is connected, the output voltage automatically varies by a configurable voltage per cell for each $1^{\circ} \mathrm{C}$ deviation from $20^{\circ} \mathrm{C}$, within the range of $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. Increasing temperature gives decreasing output voltage and decreasing temperatures gives increasing output voltage.
The battery temperature is measured by a 2 wire PT1000 sensor placed on the battery itself.

## 5 FAULT DIAGNOSIS

| Nature of problem | Suggestion <br> The charger is not operatingCheck that the incoming AC supply is correctly connected and <br> within limits and check the integrity of any external fuse that may be <br> fitted. <br> Ensure the charger is not being operated above the maximum <br> temperature specification. <br> Check the LED indications against the LED descriptions listed <br> elsewhere in this document. |
| :--- | :--- |
| Charge fail relay <br> continuously operated | Check the connected load of the charger is not reverse connected <br> or short circuit. |
| Batteries fail to charge | Check the batteries using the battery manufacturers <br> recommendations. |
| Charge time is too long | Typically, a battery will charge from flat to 80\% capacity in 16 hrs. <br> when charged at C/I0. <br> For example, charging a 50 Ah battery for 16 hrs. at 5 A <br> will charge the battery to 80\% of its full capacity. <br> Remember to consider any other standing load such as control <br> panel requirements when calculating how much power is 'left' to <br> charge the battery. |

## 6 MAINTENANCE, SPARES, REPAIR AND SERVICING

The CAT GCCP 1.2 battery charger is designed to be Fit and Forget. As such, there are no user serviceable parts.

## 7 DISPOSAL

### 7.1 WEEE (WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT)

If you use electrical and electronic equipment you must store, collect, treat, recycle and dispose of WEEE separately from your other waste.

## 8 CAT GCCP 1.2 Battery Charger Installation Instructions

## DANGER OF DEATH: LIVE PARTS exist within the CAT GCCP 1.2 enclosures. The enclosure cover must not be removed.

## Installation

The CAT GCCP 1.2 battery charger is designed to be mounted within a control panel, on the panel DIN rail utilizing the integral mounts or on a chassis utilizing the mounting holes. For dimension and mounting details, see overleaf.
The CAT GCCP 1.2 battery charger is fit-and-forget. It can be permanently connected to the supply and the load, with no requirement to disable the charger during times of heavy load (such as engine cranking) or when in parallel with a charging alternator.

## Battery suitability

The charger is factory set by Caterpillar Inc. to suit Lead Acid batteries. The CAT GCCP 1.2 battery charger is configured using the CAT GCCP 1.2 Configuration Suite to suit other battery types.
Care should be taken to ensure the batteries connected to the charger are of the correct 'technology' to suit the setting of the charger.

## Indications

The CAT GCCP 1.2 battery charger features LED indicator(s) to show the battery charger Status.

## Boost Mode

The Boost Mode feature is controlled automatically, no external connection needed. Boost mode is operated by connecting the BOOST terminals together (for instance with an external switch or timer circuit. This will raise the battery charger floating voltage by 0.8 V DC. Caution: - Boost mode is intended for equalization of cells in lead acid batteries.

| Electrical Connections <br> CAT GCCP Battery Charger |  |  |
| :--- | :--- | :--- |
| Connection type | Screw terminal, rising clamp, no internal spring |  |
| Min cable size | $0.5 \mathrm{~mm}^{2}$ (AWG 20) |  |
| Max cable size | $2.5 \mathrm{~mm}^{2}$ (AWG 14) |  |
| Recommended AC fuse | $\mathbf{2 3 0 V}$ AC Input | $\mathbf{1 1 0 V}$ AC Input |
| CAT GCCP 1.2 24V 10A charger | 3.5 A anti-surge | 6.3 A anti-surge |



## Typical Wiring Diagrams

CAT GCCP 1.2 Battery Charger


A 120 OHM TERMINATION RESISTOR MUST BE FITTED IF IT IS THE FIRST OR LAST DEVICE ON AN RS485 LINK

Dimensions and Mounting
CAT GCCP 1.2 Battery Charger

| - Overall size | - $205 \mathrm{~mm} \times 135 \mathrm{~mm} \times 80 \mathrm{~mm}\left(8.1^{\prime \prime} \times 5.3\right.$ ' $\times 3.1$ ") |
| :---: | :---: |
| - Weight CAT CGGP1.2 Battery Charger | - 0.78 kg 0.7 kg |
| - Mounting type | - DIN rail or chassis mounting |
| - Din rail type | - EN 50022 35mm type only |
| - Mounting holes | - Suitable for M4 |
| - Mounting hole centers | - 190mm x 120mm (7.5" $\times 4.7$ ") |
| - Input voltage (nominal) | - 110V-277V |
| - Input voltage (absolute range) | - 95V-305V |
| - Charge failure relay rating | - 3A DC resistive 30V maximum |
| - Operating Temperature | - $-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ with de-rating ( $-22^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}$ ) |
| - Optional Temperature Sensor | - NTC connections for PT1000 sensor only |
| - Communications | - RS485 |
| - PC connection (USB) | - To enable PC Configuration |

NOTE: CAT GCCP 1.2 Battery Charges are designed to be mounted with the base to a vertical surface with the terminal strips at the bottom.
©2019 Caterpillar All Rights Reserved

CAT, CATERPILLAR, their respective logos, "Caterpillar Yellow", and the POWER EDGE trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.




THIS DIAGRAM IS FOR GC GENSET MODELS (250kW to 600kW) FOR USE WITH : C9,C13. C15 \& C18 ENGINES 6310 CONTROLLER



NOTE C Cond






## ADDITIONAL INFORMATION - COMPONENT DETAILS \& CUSTOMER CONNECTIONS



SHORE POWER RAIL (OPTIONS INCLUDED)


## Operation \& Maintenance Manual

## for

# Provo Southwest Lift Station Specification Section 263623 AUTOMATIC TRANSFER SWITCHES 800A 

## Caterpillar

July 6, 2022
Presented To:
Stevie DeGala


Presented By:
Wheeler BAT
Power Systems 2100 South
Salt Lake City, Utah 84120
Phone: 801-974-0511
Fax: 801-978-1550
24x7 Emergency Service: 801-978-1581

## Contact:

Anthony Gustin
Product Support Sales Representative
Office: 801-978-1562
Mobile: 385-415-9065
AGustin@wheelercat.com

## Cat ${ }^{\circledR}$ CG Series

## Automatic Transfer Switches

30-1200A, 200-480 Vac


## Factory Authorized Service

For Cat ${ }^{\circledR}$ parts and service, contact your local Cat dealer.
For factory support, in the U.S. call (866) 883-3879. Outside of the U.S. call (+1) (678) 746-5000 or contact by email to CatSwgrHelpdesk@cat.com.

## Receiving, handling and storage

## Warning

Indicates a hazardous situation that, if not avoided, could result in death or serious injury

## HAZARD OF EQUIPMENT OVERTURNING

When moving with a forklift, do not re-move the shipping packaging until the de-vice is in its final location.

## Receiving and handling

Upon receipt, carefully inspect the transfer switch for damage that may have occurred during transit. If damage is evident, or there is visible indication of rough handling, immediately file a damage claim with the transportation company, and notify your local Cat dealer.

Do not remove the shipping packaging until ready to install the switch.

## Storage

If the unit will not be placed into service immediately, store the transfer switch in its original package in a clean, dry location. To prevent condensation, maintain a uniform temperature. Store the unit in a heated building, allowing adequate air circulation and protection from dirt and moisture. Storing the unit outdoors could cause harmful condensation inside the transfer switch enclosure.

Failure to follow this instruction may result in personal injury or equipment damage.

# Read these safety instructions carefully before using this product! 

## HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment and follow safe electrical work practices.
- This equipment must only be installed and serviced by qualified electrical per-sonnel.
- Before performing visual inspections, tests, or maintenance on the equipment, disconnect all sources of electric power. Assume that all circuits are live unless they are completely de-energized, tested, grounded, and tagged. Pay particular attention to the design of the power system. Consider all sources of power, including the possibility of backfeeding.
- Disconnect all sources of electric power before removing or making source side or load side connections to the transfer switch.
- Always use a properly rated voltage sensing device at all line and load connections to confirm transfer switch is disconnected from all live electrical sources.
- Turn off power supplying transfer switch before doing any other work on or inside switch.

Failure to follow these instructions could result in death or serious injury.

# Operation, maintenance, and installation instruction Cat CG Series Automatic transfer switches 

Operation and Maintenance Instructions
Installation Instructions:

Chapters 1-8
Chapters 9-11

## Operation and maintenance instruction Automatic transfer switches, Cat CG series ATS

1. Introduction ..... 9
1.1 Hazard Categories ..... 9
1.2 Definitions ..... 10
1.3 Warranty ..... 11
1.4 Product Specification ..... 12
2. Product overview ..... 13
2.1 General overview ..... 14
2.11 Operation types ..... 15
2.2 HMI ..... 16
2.3 Cat CG series features ..... 17
2.4 Typical applications ..... 20
2.5 Sequence of operations ..... 22
2.5.1 Switching sequence / Automatic ..... 22
2.6 Special features description ..... 28
2.6.1 Automatic configuration ..... 28
2.6.2 In-phase monitor ..... 28
2.6.3 Powering supply scenarios ..... 28
3 General operation ..... 29
3.1 Position indication ..... 29
3.2 Operating and locking ..... 30
3.3 Manual handle operation ..... 31
3.4 Return to automatic mode,operating by HMI ..... 34
3.5 LED functionality in HM ..... 35
$3.6 \quad$ Using HMI ..... 37
3.6.1 Keypad ..... 37
3.6.2 Navigating in menu ..... 37
3. Navigating HMI menu ..... 38
4.1 Start screens ..... 38
4.2 Using main menu and setting parameters ..... 39
4.3 Menus and parameters ..... 41
4. Electronic accessories ..... 51
5.1 Using Ekip Connect -software ..... 52
5.2 Using Ekip Bluetooth-module ..... 53
5.2.1 LED indications ..... 53
5.3 Using Ekip Programming -module ..... 54
5.3.1 LED indications ..... 54
5.4 Auxiliary power supply module ..... 55
5.4.1 Electrical characteristics ..... 55
5.4.2 LED indications ..... 55
5.5 Using Ekip Signaling 2K-_-module ..... 56
5.5.1 Electric ..... 56
5.5.2 Access from the display /Ekip Signaling 2K-_ -module ..... 56
5.5.3 LED indications and inputs/outputs of Ekip Signaling ..... 59
5.6 Using Ekip Com _ -modules ..... 60
5.6.1 Ekip Com Modbus RTU -module ..... 63
5.6.2 Ekip Com Profibus DP -module ..... 66
5.6.3 Ekip Com DeviceNet -module ..... 68
5.6.4 Ekip Com Modbus TCP -module ..... 73
5.6.5 Ekip Com Profinet -module ..... 75
5.6.6 Ekip Com EtherNet/IP -module ..... 78
$6 . \quad$ Troubleshooting ..... 82
6.1 Alarms ..... 82
6.2 Warnings ..... 84
6.3 Information ..... 85
5. Technical data ..... 86
7.1 General technical data ..... 86
7.2 Circuit diagrams ..... 89
7.3 Overall dimensions ..... 91
6. Maintenance ..... 94

## 1. Introduction

This manual describes the installation, basic operation, and maintenance of the Cat CG series (30$1200 \mathrm{~A}, 200-480 \mathrm{Vac}$ ) automatic transfer switches, manufactured by ABB. Installation instructions for the transfer switch and available accessories can be found in chapters 9 and 10.

### 1.1 Hazard Categories

The following important highlighted in-formation appears throughout this document to warn of potential hazards or to call attention to information that clarifies a procedure.

Carefully read all instructions and become familiar with the devices before trying to install, operate, service or maintain this equipment.


Danger
Indicates a hazardous situation that, if not avoided, will result in death or serious injury.


Warning
Indicates a hazardous situation that, if not avoided, could result in death or serious injury.


Caution
Indicates a hazardous situation that, if not avoided, could result in minor or moderate in-jury. Failure to comply with these instructions may result in product damage.


## Notice

It is used to notify of practices not related to personal injury. Failure to comply with these instructions may result in product damage.

### 1.2 Definitions

## ATS

Automatic transfer switches

## Ekip

Electronic accessories / Ekip-modules;
communication, signaling and connectivity
modules
HMI
Control interface (Human Machine Interface), operating and configuration

## Programming port

Only for Ekip Programming and Ekip Bluetooth -modules (USB port)

## Slide switch

Switch for operating mode selection (Hand - Locking - AUTO)

## S1

SOURCE 1, power supply

## S2

SOURCE 2, power supply

## Cat CG series ATS

General purpose commercial \& industrial enclosed automatic transfer switches, product name

## Load Shed

Digital output function for signaling a downstream load to disconnect. This functionality is different than the legacy Cat CTG R15 Load Shed which is an input for the ATS to disconnect generator when signaled.

### 1.3 Warranty

This document is based on information available at the time of its publication. While efforts have been made to ensure accuracy, the information contained herein does not cover all details or variations in hardware and software, nor does it provide for every possible contingency in connection with installation, operation, and maintenance. Features may be described herein that are not present in all hardware and software systems.

Caterpillar assumes no obligation of notice to holders of this document with respect to changes subsequently made. Caterpillar makes no representation or warranty, expressed, implied, or statutory, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warrantees of merchantability or fitness for purpose shall apply.

Contact your local Cat dealer if further information is required concerning any aspect of the automatic transfer switch operation or maintenance.

## Warranty Period

The Warranty Period for CG series transfer switch products is twenty-four (24)months from the date of shipment.

Notes: This warranty is valid only in the United States and for products sold and installed within sellerspecified countries.

Replacement parts are warranted for a period of 90 days when installed by a factory or an authorized service station.

Contact your local Cat dealer for service.

### 1.4 Product Specification

Quality Assurance
All Cat automatic transfer switches have been designed and manufactured to the highest technical standards. Strict procedures ensure first-class product quality.

## Product Serial Number

Please have the serial number available when communicating about the automatic transfer switch. The serial number can be found on the product nameplate affixed to each power panel assembly. See example below.


Figure 1.1: Sample nameplate

Product Rating / Applicable Standards For UL 1008 'withstand' and 'close on short circuit' ratings, refer to Caterpillar specification sheet, publication number LEHE2083.

## 2. Product overview

Cat CG series automatic transfer switches, from 30 A up to 1200 A , are designed for use in general purpose commercial and industrial low voltage automatic transfer switch applications. Cat CG series automatic transfer switches can be operated electrically by LCD control interface (HMI) or manually by using the handle. You can select the operating mode by the slide switch (Hand - Locking - AUTO) on switch front. Configuration is done by LCD HMI.

The available operation types for automatic transfer switches:

- Open (standard) transition Cat CG series ATS, type codes beginning CGO_from 30-1200 A, 200-480 Vac
- Delayed transition Cat CGD series ATS, type codes beginning CGD_from 30-1200 A, 200-480 Vac


### 2.1 General overview



1 Automatic transfer switch
2 Embedded ATS control unit and mechanism
3 HMI unit, CG LCD
4 Slide switch (Hand - Locking - AUTO) for selection of the operation mode
5 Padlocking the automatic transfer switch to prevent automatic and manual operation
6 Handle for manual operation
7 Position indication
8 Terminals for control circuit connections (behind the cover)
9 Place for connectivity modules (aux power supply, com and signaling)
10 Place for auxiliary contact block
11 Location of product identification label
12 Programming port, only for Ekip Programming module and Ekip Connect software

### 2.1.1 Operation types

In this table you can find the differences of the automatic transfer switch open and delayed transition operation types. Due to the different transition types, there are variances with HMI and on wiring of I/O contacts. For more information on HMIs, see chapter 2.2.


Table 2.1 The differences of level types / operation types and the suitability of Ekip-modules

### 2.2 HMI

The HMI is the control interface
(Human Machine Interface) of the ATS.
Cat CG series has an LCD HMI with push buttons. The HMI is used for configuring parameters for automatic operation.

CG:
HMI with
LCD-screen


I-II (or II - I)


Fig. 2.2 The HMI form will correspond to the type of CG series - open or delayed transition

### 2.3 Cat CG series features

| Feature comparison | CG(D) controls (LCD) |
| :---: | :---: |
| Rated voltage | 200-480 Vac |
| Rated frequency | $50 / 60 \mathrm{~Hz}$ |
| Phase system | Single and Three |
| Number of poles | 2, 3 and 4 |
| Neutral configuration |  |
| Switched | Yes |
| Product type |  |
| Open transition (I-II) | Yes |
| Delayed transition (I-O-II or II-O-I) | Yes |
| Voltage and frequency settings |  |
| Pick up SOURCE 1 Voltage | 71-99 \%, 101-119 \% |
| Drop out SOURCE 1 Voltage | 70-98 \%, 102-120 \% |
| Pick up SOURCE 2 Voltage | 71-99 \%, 101-119 \% |
| Drop out SOURCE 2 Voltage | 70-98 \%, 102-120 \% |
| Pick up SOURCE 1 Frequency | 80.5-99.5 \%, 100.5-119.5 \% |
| Drop out SOURCE 1 Frequency | 70-99 \%, 101-120 \% |
| Pick up SOURCE 2 Frequency | 80.5-99.5 \%, 100.5-119.5 \% |
| Drop out SOURCE 2 Frequency | 70-99 \%, 101-120 \% |
| Time delay settings |  |
| Override momentary SOURCE 1 Outage, sec | 0-60 |
| Transfer from SOURCE 1 to SOURCE 2, sec | 0-3600 |
| Override momentary SOURCE 2 Outage, sec | 0-60 |
| Transfer from SOURCE 2 to SOURCE 1, min | 0-120 |
| Generator stop delay, min | 0-60 |
| Center-OFF delay, sec | 0-300 |


| Feature comparison | CG(D) controls (LCD) |
| :---: | :---: |
| Pre-transfer delay S1 to S2, sec | 0-300 |
| Post-transfer delay S1 to S2, sec | 0-300 |
| Pre-transfer delay S2 to S1, sec | 0-300 |
| Post-transfer delay S2 to S1, sec | 0-300 |
| Elevator Pre-signal delay S1 to S2, sec | 0-300 |
| Elevator Post-signal delay S1 to S2, sec | 0-300 |
| Elevator Pre-signal delay S2 to S1, sec | 0-300 |
| Elevator Post-signal delay S2 to S1, sec | 0-300 |
| Load shed delay, sec | 0-300 |
| Source failure detections |  |
| No voltage | Yes |
| Undervoltage | Yes |
| Overvoltage | Yes |
| Phase missing | Yes |
| Voltage unbalance | Yes |
| Invalid frequency | Yes |
| Incorrect phase sequence | Yes |
| Features |  |
| Controls | LCD + keys |
| LED indications for ATS, S1 and S2 status | Yes |
| Open transition - Standard digital inputs/outputs | 1/1 |
| Delayed transition - Standard digital inputs/ outputs | $2 / 1$ |
| Programmable digital inputs/outputs | Yes |
| Auto config (voltage, frequency, phase system) | Yes |
| Source priority | SOURCE 1/2, No priority |
| Manual re-transfer | Yes |
| In-phase monitor | Yes |
| Genset exercising: on-load, off-load | Yes |


| Feature comparison | CG(D) controls (LCD) |
| :---: | :---: |
| Built-in power meter module | No |
| Load shedding | Yes |
| Real time clock | Yes |
| Event log | Yes |
| Field-mount accessories |  |
| Auxiliary contacts for position indication | Yes |
| Digital input/output modules | Yes |
| 12-24 Vdc aux supply module for controller | Yes |
| Communication modules | Yes |
| Connectivity |  |
| Modbus RS485 | Yes |
| Modbus/TCP | Yes |
| Profibus DP | Yes |
| ProfiNet | Yes |
| DeviceNet | Yes |
| Ethernet IP | Yes |
| Monitoring via Ability: EDCS | Yes |
| Enclosures |  |
| Type 1, 3R, 4, 12, and 4X |  |
| For applications |  |
| Mains - Mains |  |
| Mains - Generator |  |
| - |  |
| Table 2.2 ATS features not limited to what is in the |  |

### 2.4 Typical applications

Cat CG series automatic transfer switches from 30 A up to 1200 A , are designed for use in emergency or standby systems to choose and to switch between two power sources. See possible supply phase scenarios on next page. You have to define your own supply phase system - reference Chapter 4 / Navigating menu / Parameters: Power distribution systems. Factory setting: 3 phases with neutral.

Source 1
Source 2


Source 1


[^2]


Three-phase, three-wire

| $\mathbf{D}$ | E | F |
| :--- | ---: | ---: |
| $200-480$ Vac L-N | $200-480$ Vac L-L | $200-480$ Vac L-L |



Three-phase, with high leg delta

-
Fig. 2.4 Possible supply phase scenarios

### 2.5 Sequence of Operations

### 2.5.1 Switching sequence / Automatic

### 2.5.1.1 SOURCE 1 Priority (SOURCE 2 = Generator)

The switching sequence can be summarized in the following steps:

- An anomaly occurs on SOURCE 1
- Override momentary S1 outage delay
- Generator start
- SOURCE 2 OK
- Transfer from S1 to S2 delay
- Pre-transfer signal on
- Load shed signal on
- Pre-transfer S1 to S2 delay
- Load shed delay
- Transfer switch (SOURCE 1) to position O
- Center-off delay (only with Delayed transition I-O - II type)
- Transfer switch (SOURCE 2) to position II
- Post-transfer S1 to S2 delay
- Pre-transfer signal off

The re-transfer sequence can be summarized in the following steps:

- SOURCE 1 is restored
- Transfer from S2 to S1 delay
- Pre-transfer signal on
- Pre-transfer S2 to S1 delay
- Transfer switch (SOURCE 2) to position O
- Center-off delay (only with Delayed transition I-O - II type)
- Transfer switch (SOURCE 1) to position I
- Load shed signal off
- Generator stop delay
- Post-transfer S2 to S1 delay
- Pre-transfer signal off
- Generator stop
- SOURCE 2 off

SOURCE 1 priority (SOURCE 2 = generator)


Table 2.3 Automatic Switching Sequences, SOURCE 1 Priority (SOURCE $2=$ Generator)

### 2.5.1.2 SOURCE 2 Priority (No generator)

The switching sequence can be summarized in the following steps:

- An anomaly occurs on SOURCE 2
- Override momentary S2 outage delay
- Transfer from S2 to S1 delay
- Pre-transfer signal on
- Load shed signal on
- Pre-transfer S2 to S1 delay
- Load shed delay
- Transfer switch (SOURCE 2) to position O
- Center-off delay (only with Delayed transition I-O - II type)
- Transfer switch (SOURCE 1) to position I
- Post-transfer S2 to S1 delay
- Pre-transfer signal off

The re-transfer sequence can be summarized in the following steps:

- SOURCE 2 is restored
- Transfer from S1 to S2 delay
- Pre-transfer signal on
- Pre-transfer S1 to S2 delay
- Transfer switch (SOURCE 1) to position O
- Center-off delay (only with Delayed transition I-O - II type)
- Transfer switch (SOURCE 2) to position I
- Load shed signal off
- Post-transfer S1 to S2 delay
- Pre-transfer signal off

SOURCE 2 priority (no generator)


Table 2.4 Automatic Switching Sequences, SOURCE 2 Priority (No generator)

### 2.5.1.3 No Source Priority (Generator and load shed usage disabled)

The switching to available source can be summarized in the following steps:

- An anomaly occurs on SOURCE 1
- Override momentary S1 outage delay
- Transfer from S1 to S2 delay
- Pre-transfer signal on
- Pre-transfer S1 to S2 delay
- Transfer switch (SOURCE 1) to position O
- Center-off delay (only with Delayed transition I - O - II type)
- Transfer switch (SOURCE 2) to position II
- Post-transfer S1 to S2 delay
- Pre-transfer signal off

When an anomaly occurs in the source in-use, the re-transfer to available source can be summarized in the following steps:

- SOURCE 1 is restored
- An anomaly occurs on the SOURCE 2
- Transfer from S2 to S1 delay
- Pre-transfer signal on
- Pre-transfer S2 to S1 delay
- Transfer switch (SOURCE 2) to position O
- Center-off delay (only with Delayed transition I - O - II type)
- Transfer switch (SOURCE 1) to position I
- Post-transfer S2 to S1 delay
- Pre-transfer signal off

No source priority (generator and load shed usage disabled)


Table 2.5 Automatic Switching Sequences, No Source Priority (Generator and load shed usage disabled)

### 2.6 Special features description

### 2.6.1 Automatic configuration

Basic system parameters can be automatically configured from the HMI : rated volt-age, rated frequency, each supply power distribution system type, and neutral location will be recognized and set by the controller. Other parameters are set to factory values; see Chapter 4, Navigating menu.

### 2.6.2 In-phase monitor

In-phase monitor is a feature that calculates the phase difference of supply lines, preventing transfer when sources are not in sync. The user can set On/Off from the HMI. When the in-phase monitor is set to On, the device measures and detects when both sources are in sync with each other. The ATS will allow transfer from SOURCE 1 (S1) to SOURCE 2 (S2) only when they are in sync with each other. Any of these conditions will prevent source transfer when In-phase monitor is set to On:

- Phase difference between sources remains greater than 5 degrees
- Phase order between sources is not the same
- Voltage amplitude is out of range
- Phase is missing
- Voltage is asymmetric
- Frequency is out of range


### 2.6.3 Powering supply scenarios Device can be powered by the following methods:

- Direct from SOURCE 1 or SOURCE 2: Controller and HMI are powered and ATS can be operated electrically.
- Auxiliary power supply module, OXEA1:

Controller and HMI are powered, but load transfer cannot be performed.

- Programming port on HMI (USB port): Only the main board is powered. Allows software update to main device and connection of Ekip Connect commissioning tool.


## 3. General operation

### 3.1 Position indication

Contact movement and position indication is indicated in the figure below, on left side: Open transition I - II (or II - I) and on right side: Delayed transition I - O- II (or II -O-I)


Fig. 3.1 Contact movement / position indication: Type CG, Open transition; Type CGD, Delayed transition

### 3.2 Operating and locking

The operation mode is selected by using the slide switch (Hand - Locking - AUTO) located on the front of the automatic transfer switch (ATS).

- Hand-position = Manual mode, enabling emergency manual operation using the handle. ATS functionality is disabled when in Hand position.
- Lock-position = Locking mode, padlocking the automatic transfer switch in a specific position to prevent automatic and manual operation.
- AUTO-position = Automatic control mode enabled, ATS is operable in Automatic mode or from the HMI manual control keys. When the slide switch is moved to the AUTO position, the ATS is functioning immediately in the automatic control mode.


Notice
The handle must be in its stored position (not in use), after which the slide switch will move to the Locking mode automatically and the switch can be padlocked. To set the operating handle back to its place, refer to the left most picture in Fig. 3.6.

Fig. 3.2 Above the selection of the operation modes (Manual or Automatic) by the slide switch. Below padlocking the automatic transfer switch; The handle has to be in standby slot (not in use), after that the slide switch will move to the Locking mode automatically and the switch is allowed to be padlocked.

### 3.3 Manual handle operation

## Warning

Verify the condition of power source prio to manually transferring. Manual operation may result in out- of-phase ransfer when both sources are energized.

To mount the handle in the operating position, turn the slide switch to the Manual mode (Hand), lift the handle from its place inside and place it to the operating position.


Fig. 3.3 Mounting of the handle in the operating position


Fig. 3.4 Manual mode, operating by handle, delayed transition I-O-II. You have to stop and release (= take the hand off) the handle in O-position when moving from position I to II (or from position II to I)


### 3.4 Return to Automatic mode, operating by HMI

When operating the automatic transfer switch by HMI, turn the slide switch to Automatic mode (AUTO). The handle MUST be standby slot (not in use) be-fore turning to automatic mode.


Notice
When the slide switch is moved to the AUTO position, the ATS will enter auto mode after a 3 second delay.


Fig. 3.6 The operating handle must returned to standby slot before moving to the automatic mode

## 3．5 LED functionality in HMI

At the top of ZTG 30－1200 A，200－480 Vac ATS，there is a set of LEDs intended to model the state of the transfer switch sources，position，alarms，and mode．A considerable amount of information can be deciphered from the LED states．See the tables below for more information．

| LED | Indication | Description |
| :---: | :---: | :---: |
| Power led |  |  |
|  | ON，fixed light | Power supply and communication present |
| $\triangle$ |  | Power supply present，communication absent between switch and the HMI |
| AUTO | OFF $\square_{\text {min }}$ | No power available for HMI． |
| S1 and S2 leds |  |  |
| O－ | ON，fixed light $\square \square$ | S1 or／and S2 is present and within user defined limits |
| 111 | 2 quick flashes／1s manilin m凶囚 | Undervoltage |
| LOAD | Flash／1 s， $90 \% / 10 \%$－ | Invalid frequency |
|  | Flash／1 s， $10 \% / 90$ \％区回 | Unbalance |
|  | 5 flashes／1 s， $50 \% / 50 \%$ \IIIIIIIIIIIII | Overvoltage |
|  | Flash／2 s， $50 \% / 50 \%$ ■ ㄸm | Incorrect phase sequence |
|  | Flash／4 s， $50 \% / 50 \%$ ■ | Phase missing |
|  | Flash／1 s， $50 \% / 50 \%$ ■ | Generator stop delay ongoing |
|  | OFF［in | No voltage |



ON, fixed light Switch position is indicated with fixed light in I, O or II led. Only one can be on simultaneously

Flash/1 s, $50 \% / 50 \%$ ■
Delay ongoing. Going to move away from the blinking status

| Load led |  |  |
| :---: | :---: | :---: |
| +/ | ON | Supply ok and connected to load |
| 1LOAD | OFF[ | Not connected to load |
| Auto led |  |  |
| © $\triangle$ | ON, fixed light | Switch is in automatic mode |
|  | Flash/1 s, $50 \% / 50$ \% - | Test on load |
|  | Flash/1 s, $90 \% / 10 \%$ - | Test off load |
|  | 5 flashes/1 s, $50 \% / 50 \%$ IIIIIIIIIIII | Autoconfig completed |
| Alarm led |  |  |
|  | OFFITITIT | No alarms |
|  | ON, fixed light $\square$ | Handle attached, locked, other alarm |
|  |  | Control Alarm |
|  | 5 flashes/1 s, $50 \% / 50 \%$ IIIIIIIIII | Auto configuration ongoing |
|  | Flash/1 s, $50 \% / 50 \%$ - | Control Retry |
|  | Flash/1 s, $10 \% / 90$ \% 区im | Auto mode off |

[^3]
### 3.6 Using HMI

### 3.6.1 Keypad

1 Esc: Go back in menu. When pressed in root page, the alarm list is shown.
2 Up, Down: Move in menu or choose parameter values.
3 Enter: Opens menu from root page. Enter a new menu page and accept function. Also, selects parameters.
4 Auto (Alarm reset): If there are any alarms, by pressing this button you can reset all alarms. If there are not alarms, ATS will be set to Auto-mode.
5 I ON: Operate switch to I position.
6 II ON: Operate switch to II position.
7 O OFF: Operate switch to O position, only in delayed transition switches (CGD), I-O-II.

### 3.6.2 Navigating in menu

See the menu tree in Chapter 4.


Fig. 3.8 Keypad in HMI with LCD screen

## 4. Navigating HMI menu

### 4.1 Start Screens

G. 11:06<br>System Overview<br>S1 Ok Not Ok S2<br>S1 Connected to Load

|  |  | G. |  |
| :--- | :--- | ---: | :--- |
| Voltages (S1) |  |  |  |
| U1 | -- | U12 | -- |
| U2 | -- | U23 | -- |
| U3 | -- | U31 | -- |
| U0 | -- |  |  |

## Active Power view

Enabled only when current measurement module is

| System Overview (Switch status) <br> Shows voltages and frequencies of both supplies and the switch <br> position. <br> Supply info view <br> Shows Phase to Phase voltages of both supplies and the <br> frequencies. <br> Voltages (S1) <br> S1 phase voltages <br> S1 line voltage <br> Voltages (S2) <br> S2 phase voltages <br> S2 line voltage <br> Synchronization view <br> Enabled only when In-phase monitor is on. <br> Show the time to next sync, sync period <br> Current view <br> Enabled only when current measurement module is connected. <br> Phase currents <br> Neutral current <br> Residual current |
| :--- |

connected.

## Active power by phase

Total active power
Reactive Power view
Enabled only when current measurement module is connected.

Reactive power by phase
Total reactive power
Apparent Power view
Enabled only when current measurement module is connected.

Apparent power by phase
Total apparent power
Energy Counters view
Enabled only when current measurement module is connected.

| Active energy by source |
| :--- |
| Reactive energy by source |
| Apparent energy by phase |
| Total active energy |
| Total reactive energy |
| Total apparent energy |

### 4.2 Using main menu and setting parameters

Description of the icons
jos 11:06
System Overview
S1Ok $\quad$ Not Ok S2

S1 Connected to Load

Override S1 Fail

Fig. 4.2 Location of the small icons and the alarms

Alarm List

## Alarm List

Invalid Date
Ethernet disconnected

The small icons in System Overview -pages are:
$\bullet \infty$
On upper right corner
Indicates the amount of pages and the page where you are at the moment
s. Auxiliary voltage connected

11:06 Time
Generator selected, not
G | started
G
Generator selected, started
On upper left corner
60s Time delay, in Alarm list you can see the name of delay at the same time, e.g. Override S1 Fail

On the lower edge of the screen you can see the Alarms. When pressed Esc-key (1) in System Overview -pages, the alarm list is shown.

Notice
The default values are marked in the menu tree by *-marking.

For more information, see chapter 6, Troubleshooting


Fig. 4.4
By pressing Enter-key (3) you will move to the main menu page of Operation, Parameters, Measurements, Settings, Test and About, see the table below for the selections. You can move in menu or choose parameter values by Up and Down -keys (2) and by Enterkey (3) you can accept function and enter a new menu page. By Esc-key (1) you can go back in menu.

The default password is 00001, enter the password when prompted (see Fig. 4.5).

The keypad is described In Chapter 3.6, see Fig. 3.8.
By pressing the Enter-key (3) you can:

- open the menu in root page
- enter a new menu page
- accept the function

By pressing Up and Down -keys (2) you can:

## 36

37
move in the menu
choose the parameter value
By pressing Esc-key (1) you can:

- go back in the menu


## Notice

When you have changed the parameter, al-ways go back in the menu by pressing Esc-key and when prompted confirm changes with Enter-key.


Fig. 4.5 Enter the password when asked, choose the right number by Up and Down -keys (2) and confirm by Enter-key (3), go forward setting number after number

## Programming

System Parameters


Fig. 4.6 After you have changed the parameter, always go back in the menu by pressing Esc-key and when prompted confirm changes with Enter-key

### 4.3 Menus and Parameters



| Parameters |  | *Default |
| :---: | :---: | :---: |
| 幅 | System parameters |  |
|  | Start Automatic Configuration |  |
|  | Power distribution systems (see Fig. 2.2) |  |
|  | Source 1 | 1 Phase, 2 Wire |
|  |  | 2 Phases, 3 Wire (Split Neutral) |
|  |  | 3 Phases, no Neutral (3ph3w) |
|  |  | 3 Phase with Neutral (3ph4w)* |
|  |  | 3 Phase, High-Leg Delta |
|  | Source 2 | 1 Phase, 2 Wire |
|  |  | 2 Phases, 3 Wire (Split Neutral) |
|  |  | 3 Phases, no Neutral (3ph3w) |
|  |  | 3 Phase with Neutral (3ph4w)* |
|  |  | 3 Phase, High-Leg Delta |
|  |  | 3 Phase, High-Leg Delta |
|  | Rated Voltage |  |
|  | $200 \mathrm{~V}(3 \mathrm{ph}), 208 \mathrm{~V}(3 \mathrm{ph}), 220 \mathrm{~V}(3 \mathrm{ph}), 230 \mathrm{~V}(3 \mathrm{ph}), 240 \mathrm{~V}(3 \mathrm{ph}), 277 \mathrm{~V}(3 \mathrm{ph}), 347 \mathrm{~V}$ (3ph), <br> $380 \vee(3 \mathrm{ph}), 400 \mathrm{~V}(3 \mathrm{ph})^{*}, 415 \mathrm{~V}(3 \mathrm{ph}), 440 \mathrm{~V}(3 \mathrm{ph}), 460 \mathrm{~V}(3 \mathrm{ph}), 480 \mathrm{~V}(3 \mathrm{ph}), 200 \mathrm{~V}$ <br> (1ph), $220 \mathrm{~V}(1 \mathrm{ph}), 230 \vee(1 \mathrm{ph}), 240 \mathrm{~V}(1 \mathrm{ph}), 254 \mathrm{~V}(1 \mathrm{ph}), 265 \mathrm{~V}(1 \mathrm{ph}), 277 \mathrm{~V}(1 \mathrm{ph}), 318 \mathrm{~V}$ <br> (1ph), $333 \mathrm{~V}(1 \mathrm{ph}), 347 \mathrm{~V}(1 \mathrm{ph}), 380 \mathrm{~V}(1 \mathrm{ph}), 400 \mathrm{~V}(1 \mathrm{ph}), 415 \mathrm{~V}(1 \mathrm{ph}), 440 \mathrm{~V}(1 \mathrm{ph}), 460 \mathrm{~V}$ <br> (1ph), 480 V (1ph) |  |
|  | Rated Frequency |  |
|  | $8 \mathrm{Hz*}$ |  |
|  | 60 Hz |  |
|  | Neutral Position |  |
|  | Pole 4* |  |
|  | Pole 1 |  |
|  | Phase Sequence |  |
|  | ABC* |  |
|  | ACB |  |
|  | Not Enabled |  |


| Parameters (continued) |  | *Default |  |
| :---: | :---: | :---: | :---: |
| 蚛 | Device Parameters |  |  |
|  | In-phase Monitor |  |  |
|  | Enable | Off* |  |
|  |  | On |  |
|  | Synchronization Delay | 0**60 s |  |
|  | Time Delays |  |  |
|  | Override S1 Failure | 0-60 s (2* s) | S1 priority: How long the device is waiting S1 recovery before starting transfer sequence to S2. <br> S2 priority: How long the device is keeping the load on failed S1 although S2 is already available. |
|  | Transfer from S1 to S2 | $\begin{aligned} & 0-60 \text { min } \\ & \left(2^{*} s\right) \end{aligned}$ | S1 priority: How long the device is keeping the load on failed S1 after S2 becomes available. S2 priority: How long the device waits before transfer sequence back to available S2 begins. This delay is bypassed by 'Override S1 Failure' in case of S1 failure. |
|  | Pre-transfer S1 to S2 | 0*-300 s | Enabled only when any digital output is configured as 'Pre-transfer Signal'. <br> How long the device is keeping pre-transfer signal activated before transferring from S1 to S2. |
|  | Center-off | 0*-300 s | Only delayed transition I-O-II type. How long the switch is stopped at position O while transferring from S1 to S2 or from S2 to S1 and the original source is not completely down. Center-OFF delay is bypassed in case all phases are missing from the original source which we are leaving. |
|  | Post-transfer <br> S1 to S2 | 0*-300 s | Enabled only when any digital output is configured as 'Pre-transfer Signal'. <br> How long the device is keeping pre-transfer signal activated after transferring from S1 to S2. |
|  | Override S2 <br> Failure | 0-60 s ( $2^{*}$ s) | S1 priority: How long the device is keeping the load on failed S2 although S1 is already available. <br> S2 priority: How long the device is waiting S2 recovery before starting transfer sequence to S 1 . |



| Parameters (continued) |  |  | *Default |  |
| :---: | :---: | :---: | :---: | :---: |
| 帆幅 | Device Parameters (continued) |  |  |  |
|  | Voltage \& Frequency Setpoints |  | Defines the voltage and frequency limits for source being acceptable. Source has an anomaly when measured voltage/frequency goes out of range drop-out lower/drop-out Upper. Source becomes acceptable when measured voltage/frequency goes back in range pick-up lower/pick-up higher. |  |
|  | S1 Setpoints |  |  |  |
|  |  | S1 Drop-out Voltage | Upper Threshold | 102-120 \% Un (115* \% Un) |
|  |  |  | Lower Threshold | 70-98 \% Un (85* \% Un) |
|  |  | S1 Pick-up <br> Voltage | Upper Threshold | 101-119 \% Un (114* \% Un) |
|  |  |  | Lower Threshold | 71-99 \% Un (86* \% Un) |
|  |  | S1 Drop-out Frequency | Upper Threshold | 101-120 \% fn (115* \% fn) |
|  |  |  | Lower Threshold | 80-99 \% fn (85* \% fn) |
|  |  | S1 Pick-up Frequency | Upper Threshold | $\begin{aligned} & 100.5-119.5 \% \mathrm{fn} \\ & \left(114^{\star} \% \mathrm{fn}\right) \end{aligned}$ |
|  |  |  | Lower Threshold | 80.5...99.5 \% fn (86* \% fn) |
| S2 Setpoints |  |  |  |  |
|  |  | S2 Drop-out Voltage | Upper Threshold | 102-120 \% Un (115* \% Un) |
|  |  |  | Lower Threshold | 70-98 \% Un (85* \% Un) |
|  |  | S2 Pick-up <br> Voltage | Upper Threshold | 101-119 \% Un (114* \% Un) |
|  |  |  | Lower Threshold | 71-99 \% Un (86* \% Un) |
|  |  | S2 Drop-out Frequency | Upper Threshold | 101-120 \% fn (115* \% fn) |
|  |  |  | Lower Threshold | 80-99 \% fn (85* \% fn) |
|  |  | S2 Pick-up Frequency | Upper Threshold | $\begin{aligned} & 100.5-119.5 \% \mathrm{fn} \\ & \left(114^{\star} \% \mathrm{fn}\right) \end{aligned}$ |
|  |  |  | Lower Threshold | 80.5-99.5 \% fn (86* \% fn) |
|  | Generator Exercisers |  | Switch and generator functioning can be tested automatically and also periodically by using four independent exerciser events. Test on load function starts the generator and transfers the load to it. Test off load function only starts the generator for the duration of the event. Overlapping events are prioritized, event 1 has the highest priority. |  |
| Exerciser 1 / 2 / 3 / 4 |  |  |  |  |
|  |  | Status | Disabled* |  |
|  |  |  | Non-periodic |  |
|  |  |  | Daily |  |
|  |  |  | Weekly |  |
|  |  |  | Bi-weekly |  |
|  |  |  | Monthly |  |
|  |  |  | Yearly |  |


| 中的 | Device Parameters (continued) |  |  |
| :---: | :---: | :---: | :---: |
|  | Generator Exercisers (continued) |  |  |
|  | Exerciser 1/2 / 3 / 4 (continued) |  |  |
|  |  | Function | No Function* |
|  |  |  | Test on Load |
|  |  |  | Test off load |
|  |  | Duration (hh:mm:ss) | 00:00:00-24:00:59 (00:01:00*) |
|  |  | Time (hh:mm) | Starting time of the event: 00:00*-23:59 |
|  |  | Date (month day, year) | Starting date of the event Jan 01, 2000 (---*) |
|  | Application |  |  |
|  | S1-Transformer/S2-Generator* |  |  |
|  | S2-Transformer/S1-Generator |  |  |
|  | 2 Transformers/S1 Priority |  |  |
|  | 2 Transformers/S2 Priority |  |  |
|  | 2 Transformers/No Priority |  |  |
|  | Manual Retransfer |  |  |
|  | Off* |  | Automatic retransfer sequence enabled. Load is automatically retransferred to priority source upon the restoration of priority source. |
|  | On |  | Automatic retransfer sequence disabled. Load will be kept on non-priority source until operator manually (by HMI or manual handle) or remotely operates the load back to priority source. Load is also retransferred when the feature is set OFF. |
|  | Commit Transfer |  |  |
|  | Off* |  | If priority source fails, device cancels the transfer sequence to non-priority source (generator) if priority source returns before non-priority source becomes acceptable. |
|  | On |  | If priority source fails, device continues transfer sequence to non-priority source (generator) even if priority returns before nonpriority source becomes acceptable. Retransfer sequence according to time delays. |
|  | Transfer to Dead Source |  |  |
|  | On* |  | User can transfer to an unavailable source by using HMI keys I/II or by a remote command. |
|  | Off |  | Transfer to an unavailable source is disabled. |


| Measurements |  |  |
| :---: | :---: | :---: |
| Switch Diagnostics |  |  |
|  | Total operations | I-O-II switches: Total number of transfers I-O, O-II, II-O and $\mathrm{O}-\mathrm{I}$. <br> I-II switches: Total number of transfers I-II and II-I. |
|  | Manual operations | Total transfers operated by the handle. |
|  | Number of load transfers | Total number of transfers I-II and II-I. |
|  | Transfer time | Time it took to transfer the load between sources (ms). |
|  | Source fail transfers | Total number of automatic transfers due to source failures. |
|  | Days energized |  |
|  | Total time on S1 | Hours |
|  | Total time on S2 | Hours |
|  | Time S1 available | Minutes |
|  | Time S2 available | Minutes |
|  | Last generator start | MMM DD, YYYY hh:mm:ss |
|  | Generator starting time | How long it took for the generator to become acceptable after latest start (s). |
|  | In-phase time | How long it took for the in-phase monitor to achieve synchronized transfer (s). |
| Event Log |  | 250 time stamped events, latest first. |
| Harmonics |  | Harmonic components up to 15 th are calculated for the selected phase. |
| Measured Phase |  | Disabled* |
|  |  | Phase 1 |
|  |  | Phase 2 |
|  |  | Phase 3 |
| Voltage |  | Total distortion THD for each phase of both voltage sources. |
|  |  | S1 Components Each harmonic component of the selected S1 phase. |
|  |  | S2 Components Each harmonic component of the selected S2 phase. |
| Power Facto |  | Enabled only when current measurement module is connected. |


| Standard I/O Settings |  |  |
| :---: | :---: | :---: |
| 101/I02/I03 |  |  |
| Function | No function | Input disabled. |
|  | Emergency Stop* (default in I 01) | Transfers to O position in delayed transition I-O-II type switches. Disables automatic control mode in both delayed and open transition types. |
|  | Remote Test On Load* (default in I 02) | Start/stop test on load sequence in rising (NO) or falling (NC) edge of the input signal. |
|  | Remote Test Off Load* (default in I 03) | Start/stop test off load sequence in rising (NO) or falling (NC) edge of the input signal. |
|  | Inhibit AUTO Mode | Prevent switch control operations, configuration, test sequences and generator start in case of priority source failure. |
|  | Manual Retransfer | Disables automatic transfer back to priority source. |
|  | Source Priority S1 | Sets priority for source 1 in transformer-transformer application. |
|  | Source Priority S2 | Sets priority for source 2 in transformer-transformer application. |
|  | Inhibit Transfer | Disables automatic transfer from priority source to non-priority source. |
|  | Bypass Running Time Delays | Bypass any currently running time delay |
|  | Remote Control to S1 | Transfer to S1 when active. Overridden by activated 'Remote Control to OFF' signal. |
|  | Remote Control to OFF | Transfer to O position when active. |
|  | Remote Control to S2 | Transfer to S2 when active. Overridden by activated 'Remote Control to OFF' or 'Remote Control to S1' signals. |
|  | Reset Alarm | Reset any active switch control alarms (open I failure, close I failure, open II failure, close II failure) |
|  | Manual-Auto Mode | Toggle automatic/HMI control mode, input is active only in rising/falling edge according to contact type. |
| Contact type | NC | Active open. |
|  | NO* | Active closed. |
| O 01 |  |  |
| Function | No Function | Output disabled. |
|  | Alarm / Product availability* | Signals any active alarms or ATS being disabled for automatic transfer operations. |
|  | Load Connected to S1 | Switch in position I. |
|  | Load Disconnected | Switch in position O. |
|  | Load Connected to S2 | Switch in position II. |

    Standard I/O Settings (continued)
        O 01 (continued)
            Function (continued)
    | Pre-transfer Signal | Signal is activated and transfer is delayed according <br> to pre-transfer delay. Signal is kept activated <br> according to post-transfer delay after transfer. |
| :--- | :--- |
| Source 1 Available | No anomalies in S1 voltage supply. |
| Source 2 Available | No anomalies in S2 voltage supply. |
| Load Shed 1 | Used for shedding non-essential loads before <br> transferring to non-priority source. Signal is <br> activated before transferring to non-priority source <br> according to load shed delay and kept activated until <br> load is transferred back to priority source. |
| Elevator pre-signal | Signal is activated and transfer is delayed according <br> to Elevator pre-signal delay. Signal is kept activated <br> according to Elevator post-signal delay after <br> transfer. |
| NC | Active open. |
| NO* | Active closed. |

Modules (See Chapter 5, Electronic accessories)

## System

| RESET to Factory Setting |  | Restore default parameter values. |
| :---: | :---: | :---: |
| Date ${ }_{1}$ |  | Month day, year |
| Time ${ }_{1}$ |  | Hours:Minutes |
| Language |  |  |
|  | English* |  |
|  | Italian |  |
|  | French |  |
|  | German |  |
|  | Spanish |  |
|  | Russian |  |
|  | Chinese |  |
| New Password |  | Five digits |
| Temperature Unit |  |  |
|  | Celsius* |  |
|  | Fahrenheit |  |
| Clock Format | 24 h * |  |
|  | 12 h |  |



### 4.3.1 Esc key

## Alarm List

(i) Invalid Date

AEthernet disconnected

## Fig. 4.7

By pressing Esc-key (1) in System Overview
-pages, the alarm list is shown.

## Alarm list

More information, see chapter 6, Troubleshooting

## 5. Electronic accessories

## Warning

Hazardous voltage may be present within the panel when connecting electronic accessories. Remove all sources of power to the ATS panel before connecting Ekip modules.

Ekip Connect Software and Bluetooth and Programming -modules are suitable for all CG(D) 30-1200 A, 200-480 Vac automatic transfer switches, refer to chapters 5.1-5.3. for more details on:

- Ekip Connect -software
- Ekip Bluetooth -module
- Ekip Programming -module

Ekip Signaling and Com modules are suit-able for all CG(D) 30-1200 A, 200-480 Vac automatic transfer switches. These modules are mounted with auxiliary power supply module, OXEA1 (refer to Chapter 10.3 for further details).


Ekip-modules mounted with auxiliary power supply module are (see chapters 5.4-5.8):

- Ekip Signaling 2K-_
- Ekip Com modules
- Ekip Com Modbus RTU
- Ekip Com Profibus DP
- Ekip Com DeviceNet
- Ekip Com Modbus TCP
- Ekip Com Profinet
- Ekip Com EtherNet/IP
- Ekip Link



### 5.1 Using Ekip Connect software

Ekip Connect is a free software for communication and testing of Cat automatic transfer switches. The software is compatible with CG(D) 30-1200 A, 200-480 Vac automatic transfer switches.

It can be installed on PCs equipped with the Micro-soft Windows® operating system. To download it, see the address below: http://www.abb.com/abblibrary/ DownloadCenter/


Fig. 5.3 Ekip Connect -software

With its communication function, it allows you to:

- Monitor the state of the automatic transfer switches connected and record information.
- Configure the automatic transfer switches with customized parameters.
- Configure the electronic accessories, connected to the automatic transfer switch via Local Bus.
- Create communication reports.
- Reset configurations.

Further information on the Ekip Connect application is available from the web site, see the address below, particularly the manual 1SDH000891R0002.

### 5.2 Using Ekip Bluetooth module

The Ekip Bluetooth module allows connection via Bluetooth between the automatic transfer switch and a support device (PC, tablet, or smart phone) with the Ekip Connect software installed. Ekip Bluetooth module is suitable to use with all CG(D) 30-1200 A, 200-480 Vac automatic transfer switches.

The Ekip Bluetooth module draws its power from a rechargeable lithium-polymer battery supplied with the unit. It is connected directly to the programming port (see Fig. 5.6) powers the controller without the need for auxiliary voltage supply. The programming port is only compatible for use with Ekip Bluetooth and Ekip Programming modules.


Notice
Ekip Bluetooth only powers the main controller board (HMI and external modules excluded). Therefore, in order to identify all connected parts with Ekip Connect, the auxiliary power supply module, type OXEA1, must be used (see chapter 5.4).


Fig. 5.4 Ekip Bluetooth-module

### 5.2.1 LED indications

Ekip Bluetooth -module is switched on by pressing the power button on the side, and is equipped with two LEDs:

- The first LED illuminates in green with the device on and the battery charge, red with the device turned on and low battery.
- The second LED flashes blue with active Bluetooth communication.


### 5.3 Using Ekip Programming module

The Ekip Programming module is suit-able to use with all CG(D) 30-1200 A, 200-480 Vac automatic transfer switches. You can connect the module via the programming port, see Fig. 5.6. The programming port is only compatible for use with Ekip Programming and Ekip Bluetooth -modules.

Ekip Programming module allows you to:

- With Ekip Connect software update the software and load, set and read the parameters

The Ekip Programming-module
draws its power from the PC and connects one side directly to the programming port (see Fig. 5.6) and on the other to the USB port of the PC with the cable supplied.

Notice
Ekip Programming only powers the controller board
(HMI and external modules excluded). Therefore, in
order to identify all connected parts with Ekip Connect,
the auxiliary power supply module, type OXEA1,
must be used (see chapter 5.4).

### 5.3.1 LED indications

Ekip Programming -module turns on after connecting to the PC, and is equipped with two LEDs. The first, illuminates green indicating that the module is on, and the second, illuminates yellow indicating active communication.


Fig. 5.5 Ekip Programming -module


Fig. 5.6 Programming port (USB port) is situated in the front of the HMI, on left side

### 5.4 Auxiliary power supply module

When connected to a 12-24 Vdc source, the auxiliary power supply module, type OXEA1, supplies power to the external Ekip-modules, HMI and main control unit. It is supplied by external supply, for example from generator battery or from isolated transformer connected to the main power circuit. Powering product only with Auxiliary power supply module limits some operation functions of the main control unit, for example: Operation of the main switch contacts is not possible Connections are push-in spring terminals, no tool is required.

For external wiring, cable cross section; AWG 22-16 / 0.5-1.5 mm .
5.4.1 Electrical characteristics

The following table lists the electrical characteristics of OXEA1:

| Module | OXEA1 |
| :--- | ---: |
| Power supply input <br> voltage | $12-24 \mathrm{VDC} \pm 10 \% \mathrm{SELV}$ |
| Nominal power <br> consumption | $5-12 \mathrm{~W}$ |
| Inrush current | Maximum 2 A |

Table 5.1 Electrical characteristics of auxiliary power supply module OXEA1


Fig. 5.7 Auxiliary power supply module, type OXEA1, is
needed when Ekip Signaling, Com and Link -modules are mounted to automatic transfer switch OX
5.4.2 LED indications

| LED | Indication | Description |
| :--- | ---: | ---: |
| Power LED, <br> green | On, fixed | Power is connected <br> to the input of the <br> module. |
|  | Off | Power is not <br> connected. |

Table 5.2 Indication / auxiliary power supply module OXEA1


Fig. 5.8 Signals of auxiliary power supply module OXEA1

### 5.5 Using Ekip Signaling 2K-_ module

The Ekip Signaling 2K-_ is a signaling accessory module. It is suitable for all CG(D) 30$1200 \mathrm{~A}, 200-480 \mathrm{Vac}$ automatic transfer switches. The module has:

- Two digital inputs, and two contacts for output signals.
- A power status LED, and four signaling LEDs (one LED for every input/output).


Fig. 5.9 Ekip Signaling 2K -module
5.5.1 Electrical characteristics of Ekip

Signaling 2K-_ -module
The following table lists the electrical characteristics of the module:

| Component | Characteristics |
| :---: | :---: |
| Output contacts | Maximum switching voltage*: 150VDC/250VAC |
|  | Breaking power*: 2 A @ 30 V DC, 0.8A@50VDC,0.2A@150V DC,4A@250VAC |
|  | Dielectric strength between each contact and coil: 1000 V AC (1 minute @ 50 Hz ) |
|  | Dielectric strength between open contacts: 1000 V AC (1 minute @ 50 Hz ) |
| Input contacts | Do not connect to any power supply |

*Data relating to a resistive load
Table 5.3 Electrical characteristics of Ekip Signaling
2K-_-module

### 5.5.2 Access from the display / Ekip Signaling 2K-_ -module

With modules energized, and Local Bus enabled, the presence of the modules on the module slot activates additional menus on the display:

- In order to configure the inputs and out-put contacts.
- To display information on the modules and the state of inputs and outputs.

The following table illustrates the path for accessing the configuration parameters of the module from the display:


Continued on the next page

| Settings (*Default) (continued) | Description |
| :---: | :---: |
| Modules (Optional modules) (continued) |  |
| Ekip Signaling 2K-1 / -2 / -3 (continued) |  |
| O 11/12, O 21/22, O 31/32 (continued) |  |
| Function (continued) |  |
| Source 1 Available | No anomalies in S1 voltage supply. |
| Source 2 Available | No anomalies in S2 voltage supply. |
| Load Shed 1 | Used for shedding non-essential loads before transferring to non-priority source. Signal is activated before transferring to non-priority source according to load shed delay and kept activated until load is transferred back to priority source. |
| Elevator pre-signal | Signal is activated and transfer is delayed according to Elevator pre-signal delay. Signal is kept activated according to Elevator post-signal delay after transfer. |
| Contact NC | Active open |
| Type $\mathrm{NO}^{*}$ | Active closed |
| Test |  |
| : |  |
| Modules (Optional modules) |  |
| Ekip Signaling 2K-1/-2 /-3 | Auto Test |
| : |  |
| Table 5.4 Configuration and test parameters of Ekip Si | ling 2K- -module in HMI |

The following table illustrates the path from the display for accessing information on the module:

| About |  | Description |
| :---: | :---: | :---: |
| : |  |  |
| Modules (Optional modules) |  |  |
| Ekip Signaling 2K-1/-2 /-3 |  |  |
|  | SN | Serial number |
|  | Version | Software version |
|  | Input 1 | The logical state of the inputs: |
|  | Input 2 | "Off" if not active, "On" if active |
|  | Output 1 | The state of the output contacts: |
|  | Output 2 | "Open" if open, "Closed" if closed |
| : |  |  |
|  |  |  |
|  | ion of Ekip S |  |

### 5.5.3 LED indications and inputs/ outputs of

 Ekip Signaling 2K-_ -module

## -

Fig. 5.10 Signals and inputs/outputs of Ekip
Signaling 2K-_-module

1 Power LED, green. The possible states are:

- Off: power supply absent.
- On fixed: power supply and communication with the device present.
- On, with two quick flashes per second (not synchronized with those of the green LED on the device): power supply present, and communication with device absent (for example: for Local Bus disabled) ${ }_{1}$

2 Green $_{3}$ LED for Signaling the physical state of the input $\mathrm{H} \mathrm{x} \mathrm{l}_{2)}$. The possible states are:

- Off: floating input
- On fixed: input short-circuited on $\mathrm{H}^{\mathrm{Cx}} \mathrm{x}_{2}$

3 Green $_{3)}$ LED for Signaling the physical state of the input $\mathrm{H} \times 2_{2)}$. The possible states are:
-- Off: floating input
-- On fixed: input short-circuited on H Cx

4 Green $_{3}$ LED for Signaling contact $\mathrm{K} \times 1-\mathrm{K} \times 2_{2}$ ). The possible states are:

- Off: contact open
- On fixed: contact closed

5 Green $_{3}$ LED for Signaling the state of the contact K $\mathrm{x} 3-\mathrm{K} \mathrm{x4} 4_{2}$. The possible states are:

- Off: contact open
- On fixed: contact closed

6 Input I x1
7 Conductive part of the inputs $\mathrm{H} \times 1$ and $\mathrm{H} \times 2_{2}$ )

8 Input I x22)
9 Output contact pin O x12)
10 Output contact pin $\mathrm{O} \times 2_{2}$

1) The absence of communication is signaled immediately by the power LED, unlike the outputs which (apart from those programmed to be activated in the case of disconnection) are deactivated if the condition persists for at least 8 s
2) With $x=1,2$, or 3
3) The LED turns on and off according to the physical state of the input, without taking any account of how the Delay parameter is set.

For external wiring, cable cross section; AWG 22-16 / 0.5-1.5 mm .

### 5.6 Using Ekip Com -modules

Suitable Ekip Com_-modules are:

- Ekip Com Modbus RTU
- Ekip Com Profibus DP
- Ekip Com DeviceNet
- Ekip Com Modbus TCP
- Ekip Com Profinet
- Ekip Com EtherNet/IP


Fig. 5.11 Ekip Com Modbus RTU -module

### 5.6.1 Ekip Com Modbus RTU -module

The Ekip Com Modbus RTU is a communication accessory module, that integrates the automatic transfer switch in an industrial remote supervision and control network. The module is suitable for all CG(D) 30-1200 A, 200-480 Vac automatic transfer switches.

It can be connected to a RS-485 network with a Modbus RTU communication protocol, and allows you to:

- Connect the automatic transfer switch to the network, with dialog functionality.
- Provide the status information of the automatic transfer switch (e.g. open, closed)

For the communication lines W1 (A) and W2 (B), Belden type 3105 A or equivalent cables must be used

### 5.6.1.1 LED indications

The following table illustrates the possible signals, and their meaning:

| LED | Indication | Description |
| :--- | ---: | ---: |
| Power LED, <br> green | Off | Power supply absent. |

Table 5.6 Indication / Ekip Com Modbus RTU -module


Fig. 5.12 Signals of Ekip Com Modbus RTU -module

### 5.6.1.2 Termination resistor

On the Ekip Com Modbus RTU module it is possible to activate the terminating resistance Rterm $=120 \Omega$. To enable the Rterm, the corresponding dip-switches 1 and 2 (on the side of the module) must be positioned to ON. This option must be selected before the installation of the module.

With the Ekip Com Modbus RTU modules, the dip switches 3 and 4 of the Rpol (polarization resistance), are not used.


Fig. 5.13 Termination resistor; To enable the Rterm, the dip-switches 1 and 2 must be positioned to ON. This option must be selected before the installation of the module

### 5.6.1.3 Access from the display

## /Ekip Com Modbus RTU -module

With modules connected and energized the presence of the modules on the module slot activates additional menus on the display. The following table illustrates the path for accessing the configuration parameters of the modules from the display:

| Settings (*Default value) |  | Description |
| :---: | :---: | :---: |
| : |  |  |
| Modules (Optional modules) |  |  |
| Ekip Com Modbus RTU |  |  |
| Serial address | 1-247, default 247* | Address to be assigned to the modules. NOTE: devices connected to the same network must have different addresses |
| Baudrate | $9600 \mathrm{bit} / \mathrm{s}, 19200 \mathrm{bit} / \mathrm{s}^{*}$, 38400 bit/s | Data transmission speed |
| Physical protocol | 8.E,1*, 8.O,1, 8.N,2, 8.N,1 | 8.E,1 = 8 data bits, 1 EVEN parity bit, 1 STOP bit |
|  |  | 8.O,1 $=8$ data bits, 1 ODD parity bit, 1 STOP bit |
|  |  | 8.N,2 $=8$ data bits, no parity bit, 2 STOP bits |
|  |  | 8.N,1 = 8 data bits, no parity bit, 1 STOP bit |
| : |  |  |

Table 5.7 The path for accessing the configuration parameters of the Ekip Com Modbus RTU -module from the display

The following table illustrates the path from the display for accessing information on the module:

| About | Description |
| :--- | :--- |
| $:$ |  |
| Modules (Optional modules) |  |
| Ekip Com Modbus RTU |  |
| $\frac{\text { SN }}{}$ Version | Serial number |
|  | Software version |
|  |  |

Table 5.8 Information of Ekip Com Modbus RTU -module in HMI

### 5.6.2 Ekip Com Profibus DP -module

The Ekip Com Profibus DB is a communication accessory module, that integrates the automatic transfer switch in an industrial remote supervision and control network. The module is suitable for all CG(D) 30-1200 A, 200-480 Vac automatic transfer switches

It can be connected to a network RS-485 of Profibus communication protocol, and allows:

- Connecting the automatic transfer switch as a slave to the network, with dialog functionality.
- Provide the status information of the automatic transfer switch (e.g. open, closed).

For the communication lines W5 (B) and W6 (A), Belden type 3079A or equivalent cables must be used.


Fig. 5.14 Ekip Com Profibus DP -module

### 5.6.2.1 LED indications

The following table illustrates the possible signals, and their meaning:

| LED | Indication | Description |
| :--- | ---: | ---: |
| Power LED, green | Off | Power supply absent. |

Table 5.9 Indication / Ekip Com Profibus DP -module

### 5.6.2.2 Termination resistor

The Ekip Com Profibus DP modules pro-vide the possibility to insert a $220 \Omega$ termination resistor on the RS-485 bus, by setting the DIP-switches Rterm (1 and 2) on the side of the modules, in position ON. In the event of termination of the bus, a $390 \Omega$ pull-up or pull-down resistor must also be inserted on the lines, by setting the DIP-switches Rpol (3 and 4), in position ON.

These options must be selected before installation of the modules.

-
Fig. 5.15 Signals of Ekip Com Profibus DB -module

--
Fig. 5.16 Termination resistor; To enable the Rterm, the dip-switches 1 and 2 must be positioned to ON. When Rterm is activated, the Rpol must also be activated by turning dip-switches 3 and 4 to ON-position.

### 5.6.2.3 Access from the display

## I Ekip Com Profibus DB -module

With modules connected and energized, the presence of the modules on the module slot activates additional menus on the display.

The following table illustrates the path for accessing the configuration parameters of the modules from the display:

| Settings (*Default value) | Description |
| :--- | :--- |
| Modules (Optional modules)  <br> Ekip Com Profibus DB  <br> $\quad$ Serial address $\quad$ 1-125, default 125* Address to be assigned to the modules. <br> IMPORTANT: devices connected to the same  <br> network must have different addresses  <br> Table 5.10 Configuration of Ekip Com Profibus DB -module in HMI  |  |

The following table illustrates the path
from the display for accessing information on the module:

| About | Description |
| :--- | :--- |
| $:$ |  |
| Modules (Optional modules) |  |
| Ekip Com Profibus DB -module |  |
| $\frac{\text { SN }}{}$ | Serial number |
|  | Software version |

Table 5.11 Information of Ekip Com Profibus DB -module in HMI

### 5.6.3 Ekip Com DeviceNet -module

The Ekip Com DeviceNet -module is a communication accessory module, that integrates the automatic transfer switch in an industrial remote supervision and control network. The module is suitable for all CG(D) 30-1200 A, 200-480 Vac automatic transfer switches

It can be connected to a CAN network with a DeviceNetrm communication proto-col, and allows you to:

- Connect the automatic transfer switch as a slave to the network, with dialog functionality.
- Provide the status information of the automatic transfer switch (e.g. open, closed).

For the communication lines, Belden type 3084A or equivalent cables must be used.


Fig. 5.17 Ekip Com DeviceNet -module

### 5.6.3.1 LED indications

The following table illustrates the possible signals, and their meaning:
${ }^{1)}$ The device has not yet sent Duplicate ID sequence on line.

LED
Indication
Description

| Power LED, green | Off | Power supply absent. |
| :--- | ---: | ---: |
|  | On fixed | Power supply and communication with the |
| device present. |  |  |

2) The device has not yet sent Duplicate ID sequence on line.

Table 5.12 Indication / Ekip Com DeviceNet -module in HMI


Fig. 5.18 Signals of Ekip Com DeviceNet -module

### 5.6.3.2 Termination resistor

The modules provide the possibility to insert a $120 \Omega$ termination resistor on the CAN bus, by setting the DIP-switches Rterm (1 and 2 ) on the side of the modules, in position ON. This option must be selected before the installation of the modules. With the Ekip Com DeviceNet - modules, the dip switches 3 and 4 of the Rpol (polarization resistance), are not used.

Notice
The termination resistors must never be included in the nodes. The inclusion of this capability could easily lead to a network with improper termination (impedance too high or too low), potentially causing a failure. For ex-ample the removal of a node, which includes a termination resistor, could result in a network failure. The termination resistors must not be installed at the end of a branch (drop line), only at the two ends of the main backbone (trunk line).


Fig. 5.19 Termination resistor; To enable the Rterm
the dipswitches 1 and 2 must be positioned to ON.
This option must be selected before the installation of the module.

### 5.6.3.3 Access from the display I

Ekip Com DeviceNet -module

With modules connected and energized,
the presence of the modules on the module slot activates additional menus on the display.

The following table illustrates the path for accessing the configuration parameters of the modules from the display:

Settings (*Default value)
Description

Modules (Optional modules)
Ekip Com DeviceNet
MAC address 1-63, default 63* Address to be assigned to the modules. IMPORTANT: devices connected to the same network must have different addresses

|  |  | must have different addresses |
| :--- | :--- | :--- |
|  |  | $125 \mathrm{kbit} / \mathrm{s}, 250 \mathrm{kbit} / \mathrm{s}^{*}, 500 \mathrm{kbit} / \mathrm{s}$ |

Table 5.13 The path for accessing the configuration parameters of the Ekip Com DeviceNet -module from the display

The following table illustrates the path from the display for accessing information on the module:


### 5.6.4 Ekip Com Modbus TCP -module

Ekip Com Modbus TCP is an accessory module that can function as a communication module integrating the automatic transfer switch in an industrial remote supervision and control network or as an HTTP Server. The module is suitable for all CG(D) 30-1200 A, 200-480 Vac automatic transfer switches.

As a communication module, it can be connected to an Ethernet network with the Modbus TCP communication, and allows:

- Connecting the automatic transfer switch to the network, with dialog functionality.
- Provide the status information of the automatic transfer switch (e.g. open, closed).

As an HTTP Server, connected to an Ether-net network it allows read-only access to the information of the automatic transfer switch. This access is possible through a browser, inserting the IP address of the module as the URL. Once the switch has been found, a login page is opened that asks for the user password to be inserted, which is the same password to be inserted in the display in order to edit parameters.

For the communication bus, a cable of type Cat. 6 S/FTP must be used (Cat. 6 with S/FTP double shielding).


Fig. 5.20 Ekip Com Modbus TCP -module

The following table illustrates the ports used by the module:

| Port | Service | Notes |
| :---: | :---: | :---: |
| 502/tcp | Modbus TCP | When the module is used as a Modbus TCP/IP communication module. |
| 80/tcp | Server HTTP | When the module is used as a Server HTTP. |
| 319/udp | IEEE 1588 | When IEEE protocol 1588 is enabled |
| 320/udp |  |  |

### 5.6.4.1 LED indications

The following table illustrates the possible signals, and their meaning:

| LED | Indication |  |  |
| :--- | ---: | ---: | ---: |
| Power LED, green | Off | Description |  |
|  | On fixed | Power supply and communication <br> with the device present. |  |
|  | On, with two quick flashes per second | Power supply present, and <br> communication with device absent. |  |
| Link LED, green | Off | Connection error (signal absent). |  |
|  | On, fixed | Off | Correct connection. |

Table 5.16 Indication / Ekip Com Modbus TCP -module


[^4]
### 5.6.4.2 Access from the display

I Ekip Com Modbus TCP -module

With modules connected and energized, the presence of the modules on the module slot activates additional menus on the display:

- For setting the function and addressing of the modules.
- In order to display information on the modules.

The following table illustrates the path from the display, for setting the function and addressing of the modules:

| $\underline{\text { Settings (* Default value) }}$ |  | Description |
| :---: | :---: | :---: |
| : |  |  |
| Modules (Optional modules) |  |  |
| Ekip Com Modbus TCP |  |  |
| Function | HTTP Server | HTTP Server operating mode. |
|  | TCPModbus* | Communication module operating mode. |
| Force Static IP address | Off* | Dynamic IP address. |
|  | On | Static IP address. |
| Static IP Address |  | Displayed with static IP Address enabled, it must be selected in order to insert the IP Address of the modules. |
| Static Network Mask |  | Displayed with static IP Address enabled, it must be selected in order to insert the subnet mask of the modules. |
| Static Gateway addr |  | Displayed with static IP Address enabled, it must be selected in the presence of multiple subnets, in order to insert the IP Address of the node to which the modules are connected. |

Table 5.17 The path for setting the function and addressing of the modules of the Ekip Com Modbus TCP module from the display

The following table illustrates the path from the display for accessing information on the module:

| About |  | Description |
| :---: | :---: | :---: |
| : |  |  |
| Modules (Optional modules) |  |  |
| Ekip Com Modbus TCP |  |  |
|  | SN | Serial number |
|  | Version | Software version |
|  | IP Address | This is the address assigned to the modules at the moment of connection to the network. It consists of four bytes (for a total of 32 bits), each of which can have value from 0 to 255 . By default, allocation is dynamic. With dynamic allocation, the modules wait to receive the IP address from a DHCP server. Without a DHCP server, the modules adopt an Autoconfiguration IP Address in the range 169.254.xxx.xxx, calculated in a pseudo random manner so as to be the same at every switch-on. Alternatively, you can enable the static IP address option, which allows the IP address to be forced. In this case, you must make sure that the IP Address inserted is different to that of the other devices connected to the same network. |
|  | Network Mask | This is the subnet mask, and identifies the method to recognize the subnet to which the modules belong, with the possibility of searching for the modules within a defined set of recipients. If you enabled the option Static IP Address, you must also enter the correct Network Mask. |
|  | Gateway Address | The IP address of the node to which the module it is connected, in the presence of multiple subnets. If you enabled the Static IP Address option, you must also enter the correct Gateway Address. |
|  | TCP Client | There are three IP Addresses of the client devices connected to the modules. |
|  | MAC Address | It is the address assigned by ABB, having a OUI equal to ac:d3:641). |
|  |  |  |
| 1) Organizationally Unique Identifier, formed from the first three bytes of a MAC address, and which uniquely identifies the manufacturer of an Ethernet device. |  |  |
| - |  |  |
| Table 5.1 | ormation of Ekip Com | dbus TCP -module in HMI |

### 5.6.5 Ekip Com Profinet -module

The Ekip Com Profinet is a communication accessory module, that integrates the automatic transfer switch in an industrial remote supervision and control network. The module is suitable for all CG(D) 30-1200 A, 200-480 Vac automatic transfer switches.

Notice
The module can only be connected to net-works that meet all the necessary
requirements for safety and prevention of unauthorized access (for example, the network of the control system of an installation). It is the in-staller's responsibility to ensure that all the necessary safety measures are adopted (for example,
firewalls, and so on). It is recommended to connect it only to dedicated Ether-
net networks, with the Profinet communication protocol. The module cannot be connected to the Internet.

It can be connected to an Ethernet network with a Profinet communication protocol, and allows you to:

- Connect the automatic transfer switch to the network, with dialog functionality.
- Provide the status information of the automatic transfer switch (e.g. open, closed).

For the communication bus, a cable of type Cat. 6 S/FTP must be used (Cat. 6 with S/FTP double shielding).


Fig. 5.22 Ekip Com Profinet -module

The following table illustrates the ports
used by the module:

| Ethertype | Port | Service | Notes |
| :--- | ---: | ---: | ---: |
| 0x88CC | - | LLDP | Link Layer Discovery Protocol |
| 0x8892 (Profinet) | - | Profinet IO | Specific for real time <br> communications (RT) |
| $0 \times 0800$ | $34964 /$ udp | Profinet-cm <br> (Context Manager) | DCE/RP |

Table 5.19 Ports of Ekip Com Profinet -module

### 5.6.5.1 LED indications

The following table illustrates the possible signals, and their meaning:

| LED | Indication | Description |
| :--- | ---: | ---: | ---: |
| Power LED, green | Off | Power supply absent. |

Table 5.20 Indication / Ekip Com Profinet -module


Fig. 5.23 Signals of Ekip Com Profinet -module

### 5.6.5.2 Access from the display

I Ekip Com Profinet -module

The following table illustrates the path
from the display for accessing information on the module:

About

Modules (Optional modules)
Ekip Com Profinet -module

| SN | Serial number |
| :--- | ---: |
| Version | Software version |
| MAC Address | It is the address assigned by ABB and with an OUI <br> (Organizationally Unique Identifier, formed of the first three <br> bytes a MAC address, and which uniquely identifies the <br> manufacturer of an Ethernet device) equal to ac:d3:64. |

Table 5.21 Information of Ekip Com Profinet -module

### 5.6.6 Ekip Com EtherNet/IP -module

The Ekip Com EtherNet/IP is an accessory module that can act as a communication module integrating the automatic transfer switch in an industrial remote supervision and control network. The module is suitable for all CG(D) 30-1200 A, 200-480 Vac automatic transfer switches.

It can be connected to an Ethernet net-work with a EtherNet/IP ${ }^{\text {TM }}$-communication protocol, and allows you to:

- Connect the automatic transfer switch to the network, with dialog functionality.
- Provide the status information of the automatic transfer switch (e.g. open, closed)

dotice
Since this module allows the access to the data contained in the automatic transfer switch, it can only be connected to networks possessing all the necessary requirements for security and prevention of unauthorized access (for example, the network of the control system of an installation). It is responsibility of the installer to make sure that all the necessary security measures are adopted (for ex-ample firewalls and so on). The module cannot be connected directly to the Internet. It is recommended to connect it only to dedicated Ethernet networks using the EtherNet/IP ${ }^{\text {TM }}-\mathrm{c}$

For the communication bus, a cable of type Cat. 6 S/FTP must be used (Cat. 6 with S/FTP double shielding).
The following table illustrates the ports used by the module:

| Port | Protocol | Notes |
| :--- | ---: | ---: |
| 44818 | TCP | Encapsulation Protocol <br> (example: List Identity, UCMM, <br> CIP Transport Class 3) |
| 44818 | UDP | Encapsulation Protocol <br> (example: List Identity) |
| 2222 | UDP | CIP Transport Class 0 or 1 |



Fig.
Fig. 5.24 Ekip Com EtherNet/IP -module

### 5.6.6.1 LED indications

The following table illustrates the possible signals, and their meaning:

| LED | Indication | Description |
| :--- | ---: | ---: | ---: |
| Power LED, green | Off | Power supply absent. |

Table 5.23 Indication / Ekip Com EtherNet/IP -module


Fig. 5.25 Signals of Ekip Com EtherNet/IP -module

### 5.6.6.2 Access from the display I <br> Ekip Com EtherNet/IP

With modules connected and energized,
the presence of the modules on the module slot activates additional menus on the display:

- To set the addressing of the modules.
- In order to display information on the modules.

The following table illustrates the path from the display, for setting the function and addressing of the modules:

| Settings (*Default value) |  | Description |
| :---: | :---: | :---: |
| : |  |  |
| Modules (Optional modules) |  |  |
| Ekip Com EtherNet/IP |  |  |
| Force Static IP address | Off* | Dynamic IP address. |
|  | On | Static IP address. |
| Static IP Address |  | Displayed with static IP Address enabled, it must be selected in order to insert the IP Address of the modules. |
| Static Network Mask |  | Displayed with static IP Address enabled, it must be selected in order to insert the subnet mask of the modules. |
| Static Gateway addr |  | Displayed with static IP Address enabled, it must be selected in the presence of multiple subnets, in order to insert the IP Address of the node to which the modules are connected. |
| : |  |  |

Table 5.24 The path for setting the function and addressing of the modules of the Ekip Com Ethernet/IP .
module from the display

The following table illustrates the path
from the display for accessing information on the module:


## 6. Troubleshooting

Any troubleshooting should be conducted by trained and authorized personnel only. Appropriate personal protective equipment
(PPE) shall be used when troubleshooting the ATS panel. Hazardous voltage may be present. Disconnect all power sources before performing work inside the ATS panel. Failure to do so may result in serious injury or death.

### 6.1 Alarms

| Message | Fault | Action |
| :--- | ---: | ---: |
| Locked, Alarm LED on | Lock input activated | Unlock |

Table 6.1 Alarms-list in level 3 and 4, LCD and touch control interfaces

| Message | Fault | Action |
| :---: | :---: | :---: |
| S2 overvoltage | Voltage of source 2 is over the threshold level set in parameter "Dropout voltage, upper threshold" | Check the correlation between power source and device configuration |
| S2 phase missing | One or two phases of source 2 are missing | Check the power source and connections |
| S2 unbalance | Phases of source 2 are not symmetric | Check the power source |
| S2 phase rotation | Phase rotation of source 2 is different from the value of parameter "Phase sequence" | Connect the phases according to the configuration |
| Frequency Difference | Frequency difference of voltage sources is greater than 3 Hz while In-phase monitor is on | Alarm is active and transfer operations disabled as long as the frequency difference is above the accepted level |
| S2 invalid frequency | Frequency of source 2 is out of range set in parameters "Drop-out frequency, upper threshold" and "Drop-out frequency, lower threshold" | Check the correlation between power source and device configuration |
| Open I failure, Alarm LED blinking | Switch transfer from position I to O or II failed | Reset alarm by pressing Auto button or via menu page Operation / Alarm Reset |
| Close I failure, Alarm LED blinking | Switch transfer to position I failed | Reset alarm by pressing Auto button or via menu page Operation / Alarm Reset |
| Open II failure, Alarm LED blinking | Switch transfer from position II to O or I failed | Reset alarm by pressing Auto button or via menu page Operation / Alarm Reset |
| Close II failure, Alarm LED blinking | Switch transfer to position II failed | Reset alarm by pressing Auto button or via menu page Operation / Alarm Reset |
| Switch position alarm, Alarm LED on | More than one switch position indication inputs are activated | Switch service needed |
| Pole temperature alarm | Measured pole temperature is too high | Switch service needed |
| Local bus | Communication between HMI and switch controller is off | Check connection |
| Ethernet disconnected | Ethernet module not connected | Check connection |
| Fire Fighting | Fire fighting input activated | Alarm is active and disables transfer operations as long as the input is active |
| Control Voltage Failure | Control voltage dropped during switch control | Check power source |
| Control Voltage Low | Switch control voltage is below the minimum | Check power source |
| Configuration Error | Invalid configuration | Check parameter values |
| IEC 61850 Error | IEC 61850 failure | Check configuration file |
| Ekip Com Hub Alarm | Ekip Com Hub failure | Check configuration |

Table 6.1 Alarms-list in level 3 and 4, LCD and touch control interfaces

### 6.2 Warnings

|  | $\square \operatorname{LCD}$ |
| :---: | :---: |
| Message | Reason |
| S1 and S2 not in sync | Voltage sources are not synchronized |
| Voltage Not Calibrated | Calibration data in power module is invalid or unavailable |
| Current Not Calibrated | Calibration data in current measurement module is invalid or unavailable |
| Control Retry | Failed transfer sequence retry activated |
| Auto Control Disabled | Device is in manual operating mode |
| Local Bus | Module heartbeat error |
| Configuration | Configuration session ports are open |
| RTC capacitor charging | Real time clock is not yet operational, date \& time setting is disabled as long as this warning is active. RTC capacitor is charged from source voltage (not AUX) and takes about 10 minutes. |

Table 6.2 Warnings-list in level 3 and 4, LCD and touch control interfaces

### 6.3 Information

|  |  |
| :--- | ---: |
| Message | LCD |
| Invalid Date | Description |
| Test on Load | Date not set |
| Test off Load | Test on load sequence active |
| Alarm/Product Availability | Test off load sequence active |
| In Position I | Digital output function activated |
| In Position O | Digital output function activated |
| In Position II | Digital output function activated |
| Pre-transfer Signal | Digital output function activated |
| Source 1 Available | Digital output function activated |
| Source 2 Available | Digital output function activated |
| Load Shed | Digital output function activated |
| Emergency Stop | Digital output function activated |
| Remote Test on Load | Digital input function activated |
| Remote Test off Load | Digital input function activated |
| Inhibit Auto Mode | Digital input function activated |
| Manual Retransfer | Digital input function activated |
| Priority S1 | Digital input function activated |
| Priority S2 | Digital input function activated |
| Inhibit Transfer | Digital input function activated |
| Bypass Running Delays | Digital input function activated |
| Remote Control to S1 | Digital input function activated |
| Remote Control to Off | Digital input function activated |
| Remote Control to S2 | Digital input function activated |
| Alarm Reset | Digital input function activated |
| Manual-Auto Mode | Digital input function activated |
| - | Digital input function activated |

## 7. Technical data

### 7.1 General technical data



Operating voltage for control circuit 200-480 Vac.
Generator supply; min. power rating 20 kVA


Fig. 7.1 Power supply for control and power switching circuits

| Automatic transfer switch, power circuit | Value |  |
| :--- | ---: | ---: |
| Rated operational voltage | $200-480 \mathrm{Vac}$ |  |
| Rated frequency | $50 / 60 \mathrm{~Hz}$ |  |
| Rated impulse withstand voltage | $12 / 8 \mathrm{kV}$ |  |
| Operating times | See Table 7.3 | Remark |
| Automatic transfer switch, control circuit | $200-480 \mathrm{Vac}$ | Integrated, see Fig. 7.1 |
| Voltage supply | $\pm 20 \%$ |  |
| Operating voltage range |  |  |
| Voltage measurement accuracy | $50 / 60 \mathrm{~Hz}$ |  |
| Rated frequency | $\pm 20 \%$ |  |
| Operating frequency range |  |  |
| Frequency measurement accuracy | 6 kV |  |
| Rated impulse withstand voltage |  |  |



Table 7.1 Technical data for auxiliary contacts according to IEC 60947-5-1, for OA1G_, OA3G_

## Recommended Operating / Storage Temperature

Do not store the automatic transfer switch in corrosive environments above LC1 (sea salt mist) and G1 as per ANSI/ ISA-S71.04-1985. Failure to comply with these instructions may result in product damage. Store the automatic transfer switch and related accessories in a clean, dry location in their original packaging.

| Environmental | Value |
| :--- | ---: |
| Environments category | E |
| EMC environment | Environment A |
| Operating temperature (without derating) | $-20-+40^{\circ} \mathrm{C}$ |
| Operating temperature (with derating) | $-25-+70^{\circ} \mathrm{C}$ |
| Transportation and storage temperature | $-40-+70^{\circ} \mathrm{C}$ |
| Altitude (without derating) | Up to 2000 m |

Table 7.2 General technical data of automatic transfer switch

| Type | Voltage [Vac] | Nominal current* <br> [A] | $\begin{array}{r} \text { Operating time* } \\ =\text { current duration } \\ \mathrm{I}-0,0-\mathrm{I}, \\ 0-\mathrm{II}, \mathrm{II}-0 \\ {[\mathrm{~ms}]} \end{array}$ | $\begin{array}{r} \text { Operating } \\ \text { transfer time } 1,2 \\ \text { AUTO mode } \\ \mathrm{I}-\mathrm{II} \text { or II-I } \\ {[\mathrm{ms}]} \\ \hline \end{array}$ | Contact transfer time $_{1}$ I-II or II-I $\qquad$ $[\mathrm{ms}]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CG 30-260A | 200-480 | 37 | - | < 500 | $<50$ |
| CGD 30-260A | 200-480 | 37 | < 110 | < 500 | $<50$ |
| CG 400-600A | 200-480 | 40 | - | < 500 | $<50$ |
| CGD 400-600A | 200-480 | 40 | < 130 | < 500 | $<50$ |
| CG 800-1200A | 200-480 | 40 | - | < 500 | $<50$ |
| CGD 800-1200A | 200-480 | 40 | < 130 | < 500 | < 50 |

${ }_{1}$ Under nominal conditions
${ }_{2}$ Time from source fail detection to contact closing on already-available secondary source
${ }_{3} \mathrm{All}$ times consider that all timers are set to " 0 "
-
Table 7.3 Specified technical data of operating times

### 7.2 Circuit diagrams



Fig. 7.2 CG, open transition circuit diagram


Fig. 7.3 CGD, delayed transition circuit diagram

### 7.3 Overall Dimensions

CG series dimensions and weights, UL Type 1 Enclosure

| Model | ATS Rating <br> (A) | Poles | Ref. <br> Figure | $\begin{aligned} & \text { Weight }^{1} \\ & \mathrm{lb}(\mathrm{~kg}) \\ & \hline \end{aligned}$ | Dimensions ${ }^{2}$ in (mm) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Height | Width | Depth |
|  | 30-200 | 2 | A | 89 (40) | 32 (813) | 24 (610) | 12 (305) |
|  |  | 3 | A | 93 (42) | 32 (813) | 24 (610) | 12 (305) |
|  |  | 4 | A | 98 (44) | 32 (813) | 24 (610) | 12 (305) |
|  | 260 | 2 | A | 145 (66) | 46 (1168) | 24 (610) | 14 (356) |
|  |  | 3 | A | 150 (68) | 46 (1168) | 24 (610) | 14 (356) |
|  |  | 4 | A | 155 (70) | 46 (1168) | 24 (610) | 14 (356) |
| CG | 400 | 2 | A | 153 (69) | 46 (1168) | 24 (610) | 14 (356) |
| CGD |  | 3 | A | 159 (72) | 46 (1168) | 24 (610) | 14 (356) |
|  |  | 4 | A | 290 (131) | 54 (1372) | 28 (711) | 19.5 (495) |
|  | 600 | 2 | B | 278 (126) | 54 (1372) | 28 (711) | 19.5 (495) |
|  |  | 3 | B | 284 (129) | 54 (1372) | 28 (711) | 19.5 (495) |
|  |  | 4 | B | 290 (131) | 54 (1372) | 28 (711) | 19.5 (495) |
|  | 800-1200 | 3 | C | 482 (219) | 74 (1880) | 40 (1016) | 19.5 (495) |
|  |  | 4 | C | 515 (234) | 74 (1880) | 40 (1016) | 19.5 (495) |

${ }^{1}$ Enclosures Type 3R, 12, 4, and $4 \times$ weights are up to 22\% greater than Type 1 Enclosures
Enclosures Type 3R, 12, 4, and $4 \times$ dimensions differ. Consult Tech Support for detals
${ }^{4}$ Packing materials must be added to weights shown. Allow $15 \%$ additional weight for cartons, skids, crates, etc


Figure A


Figure B


Figure C

## 8. Maintenance

## Warning

Any maintenance should be conducted by trained and authorized personnel only. Appropriate personal protective equipment (PPE) shall be used when performing maintenance on the ATS panel
Hazardous voltage may be present. Disconnect all power sources before performing work inside the ATS panel
Failure to do so may result in serious injury or death.

## Maintenance Principle

The Cat CG(D) series 30-1200 A, 200-480 Vac automatic transfer switches are designed so that the contacts last their designed lifetime without any routine maintenance needs. If there are abnormal conditions such as a fault or overload without adequate protection, or extreme environment conditions, a failure of ATS components may occur. Fortunately, all critical modules, including complete mechanism with electronics (controller, power module, and solenoid mechanism), HMI, and accessories are easily replaceable. Refer to Chapter 11 for replacement parts.

On the other hand, when the contacts have seen an event, or have met the end of their lifetime, the whole switch should be replaced - which can be done easily by replacing the complete TruONE power panel within the enclosure.

In the case you suspect a failure may be due to manufacturer defect and covered under warranty, see Chapter 1.3.

## Installation instruction Automatic transfer switches

9. Panel installation ..... 97
9.1 Basic Tools for Installation and Maintenance ..... 98
9.2 Equipment Inspection and Storage ..... 98
9.3 Lifting and mounting the panel ..... 93
9.4 Mounting the automatic transfer switch ..... 100
9.4.1 Mounting hole dimensions ..... 100
9.5 Mounting of the handle ..... 101
9.5.1 Mounting of the handle to operation position, manual mode ..... 101
9.5.2 Mounting of the HMI, automatic mode ..... 102
9.5.3 HMI Installation ..... 105
9.6 Wire Connection ..... 104
9.7 Final Equipment Inspection ..... 104
9.8 Initial Energizing ..... 106
10. Accessories ..... 106
10.1 Phase barriers ..... 106
10.2 Auxiliary contact blocks ..... 107
10.3 Auxiliary power supply and Ekip -modules ..... 108
10.4 HMI protective cover ..... 110
11. Replacement parts ..... 111

## 9. Panel installation

Before mounting the product, please, check the product identification from the product identification label, which is located on the front panel under the control interface unit (HMI). This label indicates the product model (type number), some important technical data information, minimum enclosure size, suitable wire information, etc.


## Notice

Final inspection of the equipment should be performed prior to energizing the automatic transfer.

Remove any dirt or debris that may have collected during shipment or installation. NEVER use compressed air. Doing so could drive dirt or other foreign objects into electrical or mechanical components, which could cause damage. Use an industrial-quality vacuum cleaner to remove any dirt or foreign objects.

Be certain all cable connections are correct and that the phase rotation of both sources match.

Inspect the engine start connections and verify the correct connection of all control wires.

Check all programmable set points and adjust as necessary. In addition, adjust any optional accessories as required.

Be certain that the actual lug torque values are in keeping with the requirements outlined in the instruction book to ensure the integrity of power connections.

Check to be sure that all covers and barriers are properly installed and fastened.

If any damage is found or suspected, file a claim as soon as possible with the carrier, and notify your Cat Dealer.

### 9.1 Basic Tools for Installation and Maintenance

| Tool | Task |
| :--- | :--- |
| $1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ Allen head socket driver | Power cable connection |
| Torque wrench | Torqueing of the lugs and other hardware as required. <br> Range of device to be $50-500$ in-lbs $(5-57 \mathrm{~N}-\mathrm{m})$ |
| Torque screwdriver | Torqueing of control wire terminations, auxiliary contact <br> input terminals. $5-25$ in-lbs $(0.5-2.8 \mathrm{~N}-\mathrm{m})$ |
| Wire cutters/wire crimpers | Auxiliary contacts wire installation, Options installation |
| Voltmeter | Trouble shooting tool for measuring incoming voltage, <br> frequency, continuity and control signal transmission. |
| Controller default password 00001 | Changing parameters within the controller |

Table 9.1 Required tools for common installation and maintenance tasks

### 9.2 Equipment Inspection and Storage

$\square$ Warning
When performing a hi-pot or dielectric test on the power section of the ATS panel, DISCONNECT the complete electronics, controller, and mechanism section of the ATS from the power section to avoid potential damage to the electronics.

Once you have received the transfer switch, inspect it for any damage. This includes damage to the enclosure, power panel, control panel and wiring harness. If any damage is found or suspected, file a claim as soon as possible with the carrier and notify your Cat dealer representative.

Before installation, if it is necessary, store the transfer switch in a clean dry place, protected from dirt and water. Provide ample air circulation and heat, if necessary, to prevent condensation.

See table 7.2 for recommended storage and ambient operating temperatures.

### 9.3 Lifting and Mounting the Panel

## Lifting guidelines

Adequate lifting means must be used to mount the transfer switch into place. The recommended method for moving the ATS, up to 1200 A , is with lifting strap and lifting equipment rated for the equipment weight.

## Danger

Hazardous Voltage can Cause Severe Injury or Death
Turn OFF all power before installation, adjustment, or removal of transfer switch or any of its components.

## Lifting, Mounting and Installation

The safe operation of your switch is paramount to Caterpillar. Please recognize that hazardous voltages and currents can exist during normal operation, and any maintenance on the transfer switch must be performed utilizing appropriate safety measures. Installation, adjustment, maintenance or removal of the switch must only be carried out by qualified personnel and with all power to the switch turned off. It is recommended that only qualified electricians be allowed to install or provide maintenance on the switch.

Prior to installation, store the transfer switch in a clean dry location, protected from dirt and water. Provide ample air circulation and heat if necessary, to prevent condensation. See table 7.2 for recommended storage and ambient operating temperatures.

Cat automatic transfer switches are packaged as per the standard packaging regulatory standards requirement suitable for domestic and international shipment through all modes of transportation (air, sea and road). Once you unpack the units, please make sure all the components are received as per the BOM. For any missing items, contact your local Cat Dealer representative.

Warning
Due to hazardous voltages and currents, Caterpillar recommends that a certified technician or a qualified electrician perform the installation \& maintenance of the switch.


Danger
Hazardous Voltage can Cause Severe Injury or Death
Automatic Transfer Switch Equipment must be electrically grounded. Failure to do so may result in malfunction of the switch and possible damage to surrounding equipment.


Warning
Before drilling conduit entry holes or any accessory mounting holes, cover and protect the switch and control panel to prevent dirt and metal fragments from entering the mechanical and electrical

### 9.4 Mounting the automatic transfer switch

### 9.4.1 Mounting hole dimensions



Fig. 9.1 Automatic transfer switches, Mounting hole dimensions, refer to Table 9.2 for A1 and A2 values
CG series enclosure mounting dimensions


Table 9.2 Cat CG(D) panel mounting dimensions

### 9.5 Mounting of the handle

For more information of operating, position indication and the selection of the operating mode, see the Chapter 3.2 Operating and locking.


## Warning

Verify the condition of power source prior to manually transferring. Manual operation may result in out-of-phase transfer when both sources are energized.
$\qquad$
9.5.1 Mounting of the handle to operation position, manual mode


### 9.5.2 Mounting of the HMI, automatic

mode


Fig. 9.3 Before moving to the Automatic mode, the operating handle must set to its place. When the handle is in its place properly, the slide switch will move to the Locking mode automatically and the switch is allowed to be padlocked, if needed. From the Locking mode the slide switch can be moved to the Automatic mode

### 9.5.3 HMI Installation



### 9.6 Wire Connection



CG series AL/CU UL Listed Solderless Screw-Type Terminals for External Power Connections

| Model | ATS Rating <br> (A) | Source/Load | Wire Range | Cables per pole | Cables - Tightening Torque ${ }_{1}$, lb-in (N-m) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CG } \\ & \text { CGD } \end{aligned}$ | 30-200 | Source 1 | 6 AWG - 300 KCMIL | 1 | 275/31.1 |
|  |  | Source 2 / Load | 4 AWG - 300 KCMIL | 1 | 200/22.6 |
|  | 260-400 | Source 1 | 2 AWG - 600 KCMIL | 1 | 375/42.4 |
|  |  | Source 2 / Load | 2 AWG - 600 KCMIL | 1 | 375/42.4 |
|  | 600 | Source 1 | 2 AWG - 600 KCMIL | 2 | 500/56.5 |
|  |  | Source 2 / Load | 2 AWG - 600 KCMIL | 2 | 500/56.5 |
|  | 800-1200 | Source 1 | 2 AWG - 600 KCMIL | 4 | 500/56.5 |
|  |  | Source 2 | 2 AWG - 600 KCMIL | 4 | 500/56.5 |
|  |  | Load | 2 AWG - 600 KCMIL | 4 | 500/56.5 |

${ }_{1}$ Do not exceed this value - may cause damage to switch, voiding warranty -
Table 9.3 Power Cable Torque Requirements

### 9.7 Final Equipment Inspection

Prior to energizing the transfer switch:

1 Remove any debris incurred, with a vacuum, due to shipment or installation.
2 Verify that all cabled connections are correct and that phase rotation of both sources match.
3 Check engine start connections.
4 Verify the correct connection of all control wires.
5 Check settings of all timers and adjust as necessary.
$6 \quad$ Adjust any optional accessories as required.
$7 \quad$ Check the lug torque values of the power connections.
8 Make sure that all covers and barriers are installed and properly fastened

Each Cat transfer switch is factory wired and tested. A complete information package is furnished with each switch which includes:

| 1 | Sequence of operation. |
| :--- | :--- |
| 2 | Description and operation of all accessories supplied. |
| 3 | Power panel connection diagram and schematic. |
| 4 | Description and identification of all customer field connections. |
| Installation of Cat transfer switches includes: |  |
| 1 | Mounting the transfer switch cabinet. |
| 2 | Connection of Source 1, Source 2, and Load cables or bus bars. |
| 3 | Connection of external control circuits as required. |

### 9.8 Initial Energizing

Before proceeding, refer to the information package supplied with the ATS and read and understand the information on all accessories provided, including this complete document.

## Before energizing the panel

Confirm that installation has been per-formed by a qualified person and in accordance with NFPA 70 (NEC).

(1)
Notice
This installation should be properly operated and maintained in accordance with the safety practices of NFPA 70E

- Confirm rating label matches the in-stalled application. Rating label is located inside the panel enclosure.
- Confirm that cables are connected properly and torqued according to the ATS labeling.
- Verify that the enclosure ground connection is properly terminated.
- Confirm that control wiring for engine start is properly terminated to the engine start contact (located in Figure 2.1, number 8). Additionally, connect all applicable digital I/O, communications, and auxiliary contact wiring.
- Flip slide switch (Figure 2.1, number 4) to AUTO

Ensure that all objects and debris are removed from enclosure, and enclosure is closed and latched

## Energizing the panel

1. Close Source 1 circuit breaker.

NOTE: The HMI should illuminate if line voltage is present and S1 LED should light up.

- Verify the phase to phase voltages at the Source 1 terminals.
- Initiate auto configure from HMI default screen: Enter>Parameters>System Parameters>Start Automatic Configuration and allow a few seconds for system parameters to set.
- Close the Source 2 circuit breaker.
- Start the generator engine.

NOTE: If generator voltage is present at Source 2 terminals, S2 LED should light up.
2. Verify phase rotation of S1 matches that of S2.

NOTE: The ATS will not allow transfer if phase rotation does not match.

- Shut down the generator engine.
- Place the ATS in AUTO mode from the HMI by pressing AUTO key.


## 10. Accessories



Warning
Any troubleshooting should be conducted by trained and authorized personnel only. Appropriate personal protective equipment (PPE) shall be used when troubleshooting the ATS panel.
Hazardous voltage may be present. Disconnect all power sources before performing work inside the ATS panel.
Failure to do so may result in serious injury or death.

### 10.1 Phase barriers

Phase barriers must be used to maintain a
clearance of 1 inch on the automatic
transfer switch types. They are included
with the shipment of CG series ATS
Panel.


Fig. 10.1 Mounting of phase barriers, type OXEB_

### 10.2 Auxiliary contact blocks

Refer to Figure 7.1 for auxiliary contact ratings.

| Position | OA1G10 | OA3G01 |
| :--- | :--- | :--- |
| SOURCE 1 (S1), max 2+2 |  |  |
| I |  |  |
| O |  |  |
| II |  |  |

SOURCE 2 (S2), max 2+2


Table 10.1 Contact positions


OA_


Fig. 10.2 Mounting of the auxiliary contact blocks, type OA_

### 10.3 Auxiliary power supply and Ekip -modules

CG(D) 30-1200 A, 200-480 Vac Automatic transfer switches can be equipped with Ekip-modules. Ekip-modules are mounted with a auxiliary power supply module, OXEA1. Suitable Ekip-modules are: Ekip link, Signaling and connectivity modules. For more information, see Chapter 5, Electronic accessories.

The maximum number of Ekip-modules varies by panel ampacity :
430-200 A: 3 Ekip modules
260-400 A: 4 Ekip modules


Fig. 10.4 Mounting of the auxiliary power supply
module OXEA1 and Ekip -modules


Fig. 10.5 Removing the auxiliary power supply module OXEA1 and Ekip -modules from the automatic transfer switch

### 10.4 HMI protective cover

UL Type 3R HMI protective cover, type OXEC21, provides protection against water ingress. It comes standard with NEMA 3R enclosures, and is available as a replacement part.


Fig. 10.6 Mounting of HMI protective cover, type OXEC21

## 11. Replacement Parts

| Type | Suitable for Switches | Order code | Weight (lb) |
| :---: | :---: | :---: | :---: |
| HMI module | Open transition (CG 30-1200 A, <br> 200-480 Vac) | OXAHMI-L3 | 0.42 |
|  | $\begin{aligned} & \text { Delayed transition (CGD 30-1200 A, } \\ & 200-480 \mathrm{Vac}) \end{aligned}$ | OXBHMI-L3 | 0.42 |
| Manual handle | Open transition and delayed transition (CG(D) 30-1200 A, 200-480 Vac) | OXHANDLE-1600 | 0.18 |
| Complete ${ }^{1}$ mechanism with electronics | Open transition (CG, 200-480 Vac) |  |  |
|  | 30-260 Amps | OXAMECH-2-L3 | 16.28 |
|  | 400-600 Amps | OXAMECH-3-L3 | 21.12 |
|  | 800-1200 Amps | OXAMECH-4-L3 | 23.32 |
|  | Delayed transition (CGD, 200-480 Vac) |  |  |
|  | 30-260 Amps | OXBMECH-2-L3 | 16.50 |
|  | 400-600 Amps | OXBMECH-3-L3 | 21.34 |
|  | 800-1200 Amps | OXBMECH-4-L3 | 23.54 |
| Phase barrier | 30-1200 Amps, 3 pole | OXEB1600/4 | 1.10 |
|  | 30-1200 Amps, 4 pole | OXEB1600/6 | 1.54 |

[^5]Fig. 11.1 Replacement parts, available from your Cat dealer.

Materials and specifications are subject to change without notice.
CAT, CATERPILLAR, LET'S DO THE WORK, their respective logos, "Caterpillar Corporate Yellow", the "Power Edge" and Cat "Modern Hex" trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.




# Provo City Southwest Lift Station PROJECT \#: 001958 Section: 262422 

# 50HP. Variable Freq. Drive Systems O \& M ManUAL 

JULY 5, 2022

## Prepared For:

Morris Electric, Inc.
275 W 900 N
SpRINGVILLE, UT 84663
(801) 489-8501

## Prepared By:

Quality Electrical Systems
646 West $9^{\text {TH }}$ Avenue
MidVaLe, Utah 84047
(801) 566-7200


## Table of Contents:

Tab No. 1 Main - Bill of Material \& Spares plus Test ReportsMain - BBill off Material3Spare Parts ListWWarrantyyTest Reports6
Tab No. 2 Drawings
550HPH VFD System Drawings
LLocal Control Panel Drawings ..... 10
Tab No. 3 Bills of Material
Catalog Data ..... 24
Tab No. 4 Manuals
Port 5200 Series sers Man al ..... 127
Tab No. 5 s
n strial t ernet Switc Man al ..... 201
Tab No. 6
lti ar TV600 VFD Programming Man al. ..... 234

| MAIN - BILL OF MATERIAL |  |  |  |
| :---: | :--- | :--- | :--- |
| QTY. | DESCRIPTION |  | PART NUMBER |
| 1 | 50 HP VFD SYSTEM, NEMA 12 ENCLOSURE | PMP-42310 | MANUFACTURER |
| 1 | LOCAL CONTROL PANEL | Q/A | QES |
|  |  | PMP-42320 |  |
| 1 | 50 HP VFD SYSTEM, NEMA 12 ENCLOSURE | N/A | QES |
| 1 | LOCAL CONTROL PANEL | PMP-42330 |  |
|  |  | N/A | QES |
| 1 | 50 HP VFD SYSTEM, NEMA 12 ENCLOSURE |  | QES |
| 1 | LOCAL CONTROL PANEL |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Spare Parts

## Bill of Materials

| VFD Panel |  |  |  |  |
| :---: | :---: | :--- | :--- | :--- |
| ITEM | QTY | DESCRIPTION | CATALOG | MANUFACTURE |
| 1 | 2 | ON DELAY TIMER 120V (8 PINS) | RTE-P1AF20 | IDEC |
| 2 | 2 | TIMER BASE 8 PINS FINGER SAFE | SR2P-05C | IDEC |
| 3 | 2 | 2 POLE RELAY WITH INDICATOR 120V | RH2B-UL-AC120V | IDEC |
| 4 | 2 | 2 POLE RELAY BASE FINGER SAFE | SH2B-05C | IDEC |
| 5 | 2 | 4 POLE RELAY WITH INDICATOR 120V | RH4B-UL-AC120V | IDEC |
| 6 | 2 | 4 POLE RELAY BASE FINGER SAFE | SH4B-05C | IDEC |
| 7 | 2 | BREAKER - TMAX, XT2, 480V 3P 100A FIXED | XT2HU3100BFF000XXX | ABB/GE |
| 8 | 10 | FUSE 600VAC, 3A | KLDR 3 | LITTELFUSE |
| 9 | 10 | FUSE 250 VAC, 6.25A | FLM 6-1/4 | LITTELFUSE |
| 10 | 10 | FUSE 250 VAC, 1A | 217001 | LITTELFUSE |
| 11 | 1 | POWER SUPPLY - 24VDC, 15W, 0.65A | PS5R-VB24 | IDEC |
| 12 | 2 | PILOT LIGHT: 120VAC, PUSH-TO-TEST, AMBER | ALD2QH211DNUA | IDEC |
| 13 | 2 | PILOT LIGHT: 120VAC, PUSH-TO-TEST, RED | ALD2QH211DNUR | IDEC |
| 14 | 2 | PILOT LIGHT: 120VAC, PUSH-TO-TEST, GREEN | ALD2QH211DNUG | IDEC |
| 15 | 2 | PUSH BUTTON: MOMENTARY, BLACK, 1NC-1NO | ABD111NUB | IDEC |
| 16 | 1 | TOUCH UP PAINT - SPRAY ENAMEL, ANSI61 GRAY | ATPPYY61 | IDEC |


| LCS Panel |  |  |  |  |
| :---: | :---: | :--- | :--- | :--- |
| ITEM | QTY | DESCRIPTION | CATALOG | MANUFACTURE |
| 1 | 2 | SELECTOR SWITCH: 3 POS. MAINTAINED | ASD340NU | IDEC |
| 2 | 2 | PUSH BUTTON: GREEN, FLUSH | ABD111NUG | IDEC |
| 3 | 2 | PUSH BUTTON: RED, FLUSH | ABD111NUR | IDEC |
| 4 | 2 | PUSH BUTTON: RED MUSHROOM | AVD301NUR | IDEC |

## Certificate of Warranty

Quality Electrical Systems Inc. is pleased to certify that the equipment purchased for the job listed below is covered by Quality Electrical Systems Inc. and the respective original equipment manufacturers for a period of 18 months from the date of shipment or 12 months from the date of start-up or (beneficial use by the owner) whichever comes first.

This warranty covers failures due to defects in materials and workmanship only. Failures due to improper use, abuse, physical damage, utility surge or acts of nature are not covered.

In the event of a failure Quality Electrical Systems working with the equipment manufacture will replace or repair the equipment (at its’ sole discretion). Replaced or repaired equipment will be covered by this same warranty until the expiration thereof. Replacement or repair of equipment does not reset the warranty period.

Repairs or modifications to the equipment by anyone other than Quality Electrical Systems Inc. will void the warranty entirely.

Warranty coverage is limited to the value of the replacement or repair of the equipment supplied by Quality Electrical System Inc. and in no way implies coverage of any other costs associated with the failure or loss of use of the equipment.

Project Name: Provo City Southwest Lift Station<br>Project No.: 001958<br>Customer: Morris Electric, Inc.<br>Owner: Provo City Public Works<br>Date: 17 December 2021<br>Shipment Date: TBD<br>Startup Date: TBD

## Ken Worton

Quality Electrical Systems, Inc.

## FACTORY FORMS

## 1. Power Wiring

Check wire condition inspect wire jackets
Verify terminal torque is correct
Torque marks are present
Pull test on each wire was performed verify wire size per UL 508 Table 28.1 is correct Verfy customer connection lugs are the correct size
2. Control Wiring

Check wire Strip length
Wires are properly labeled
Pull test on each wire was completed
3. Input breaker and through the door operator Main circuit breaker is correct size for load Mechanical operation of breaker was verified Breaker has been tripped and reset with op. mech Breaker door interlock verified operational

## 4. Enclosure Inspection

Exterior paint is free from scratches
Paint color is correct
Door closes properly
Verify uniform gasket compression
Gaskets and covers are installed
Correct air filter is installed
Panel is free from all foreign matter

| Builder | Lead | Engineer |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| Builder | Lead | Engineer |
|  |  |  |
|  |  |  |
|  |  |  |


| Builder | Lead | Engineer |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |



## Note: Electronics that have a S/N must be recorded in section 7.

## 7. VFD/ Soft Start Section

Engineer
Verify parameter setup
Motor no load run test

## 8. Operational test

Setup meters/displays
Hand operation
Auto operation
Stop by permissive
Digital inputs
Digital outputs
Analog inputs
Analog outputs
Door fan operation/rotation
DC bus fan operation
Pilot lights
Link keypad set-up
Phase relay verified.

## 9. Functionality Check

System voltage was verified System voltage was applied Control voltage was verified
Parts function \& operation was verified
10. UL Label was applied (if required)
11. Engineer verifies all production blocks are complete

## 12. Shipment

Control panel has been photographed
Photos have been uploaded to server
Control panel has been properly packaged for shipment
Frieght Signage if required was applied
Control panel was banded and secured to pallet
Vacuum and clean if needed.

## 13. Document follow up

Photos have been uploaded to server
Tracking \# was recorded and sent to customer Updated on Production

Engineer


Engineer


Engineer

Engineer


Shipper


Project Mngmnt


## DRAWINGS \& LAYOUTS



Front View
Exterior

$\underset{\substack{\text { concept May Differ from As bult } \\ \text { INTERIOR }}}{\text { Panel View }}$


Bottom View

Side View SOME COMPONENTS NOT SHown
 TRANSPARENT WALLS





Front View
Exterior


| ITEM | QTY | DESCRIP TON | Catalog | MANUFACTURE |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | ENCLOSURE, TYPE 12, GRAY, 4 PILOT DEVICE HOLES, $11^{\prime \prime} \times 4.2^{\prime \prime}$ | E4PBX | HOFFMAN |
| 2 | 1 | SELECTOR SWICH: 3 POS. MAINTAINED, 120VAC, 2 NO - 2NC | ASD340NU | IDEC |
| 3 | 1 | PUSH BUTTON: GREEN, FLUSH, 12VVAC, 1NO - 1 NC | ABD111NUG | IDEC |
| 4 | 1 | PUSH BUTTON: RED, FLUSH, 120VAC, 1NO-1NC | ABD111NUR | IDEC |
| 5 | 1 | PUSH BUTTON: RED MUSHROOM, PUSH LOCK - TURN RELEASE, 1 | AVD301NUR | IDEC |



Side View
some components not shown transparent walls

## Bill of Materials

50HP VFD - BILL OF MATERIAL

| ITEM | QTY | DESCRIPTION | CATALOG | MANUFACTURE |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | ENCLOSURE ,TYPE 12, GRAY, 90"H X 34"W X 24"D | CUSTOM | QES |
| 1A | 1 | BACK PANEL | CUSTOM | QES |
| 2 | 1 | VFD - 50HP (NORMAL DUTY), 74A, 480VAC, 3P | ATV630D37N4 | SCHNEIDER |
| 2A | 1 | KEYPAD MOUNTING KIT | VW3A1112 | SCHNEIDER |
| 2B | 1 | KEYPAD CORDSET | VW3A1104R30 | SCHNEIDER |
| 3 | 1 | BREAKER - TMAX, XT2, 480V 3P 100A FIXED | XT2HU3100BFF000XXX | ABB/GE |
| 4 | 1 | LOAD TERMINAL: CuAl, XT2, \#10-2/0 AWG, W/ CTRL TAP | KXT2CUAL2C-3PC | ABB/GE |
| 5 | 1 | LINE TERMINAL: Cu, XT2, \#14-1/0 AWG | KXT2CU-3PC | ABB/GE |
| 6 | 1 | OPERATION HANDLE BASE | KXTCRHEBFP | ABB/GE |
| 6A | 1 | HANDLE - PISTOL w/ LOCKOUT TAB | OHB65J10B | ABB/GE |
| 6B | 1 | TELESCOPIC SHAFT | OXP10X500 | ABB/GE |
| 7 | 1 | LINE REACTOR - 5\% IMPEADANCE, 65A, 3 POLE | KDRF1H | TCI |
| 8 | 1 | POWER DISTRIBUTION BLOCK - 3P, LINE:(1)3/0-\#14, LOAD:(1)3/0-\#14 | 1343572 | MARATHON |
| 9 | 1 | CONTROL CIRCUIT TRANSFORMER, 480V:120V .5kVA | 9T58K0050G38 | ABB/GE |
| 10 | 2 | FUSE 600VAC, 3A | KLDR 3 | LITTELFUSE |
| 11 | 1 | FUSE 250 VAC, 6.25A | FLM 6-1/4 | LITTELFUSE |
| 12 | 4 | FUSE 250 VAC, 1A | 217001 | LITTELFUSE |
| 13 | 6 | 2 POLE RELAY WITH INDICATOR 120V | RH2B-UL-AC120V | IDEC |
| 13A | 6 | 2 POLE RELAY BASE FINGER SAFE | SH2B-05C | IDEC |
| 14 | 2 | 4 POLE RELAY WITH INDICATOR 120V | RH4B-UL-AC120V | IDEC |
| 14A | 2 | 4 POLE RELAY BASE FINGER SAFE | SH4B-05C | IDEC |
| 15 | 1 | ON DELAY TIMER 120V (8 PINS) | RTE-P1AF20 | IDEC |
| 15A | 1 | TIMER BASE 8 PINS FINGER SAFE | SR2P-05C | IDEC |
| 16 | 3 | PILOT LIGHT: 120VAC, PUSH-TO-TEST, LED, AMBER, 30MM | ALD2QH211DNUA | IDEC |
| 17 | 1 | PILOT LIGHT: 120VAC, PUSH-TO-TEST, LED, RED, 30MM | ALD2QH211DNUR | IDEC |
| 18 | 1 | PILOT LIGHT: 120VAC, PUSH-TO-TEST, LED, GREEN, 30MM | ALD2QH211DNUG | IDEC |
| 19 | 1 | PUSH BUTTON: OCTAGONAL FLUSH, MOMENTARY, BLACK, 1NC-1NO | ABD111NUB | IDEC |
| 20 | 1 | POWER SUPPLY - 24VDC, 15W, 0.65A | PS5R-VB24 | IDEC |
| 21 | 2 | FAN - 120VAC, 600CFM | W2E200-HH86-01 | EBM |
| 22 | 1 | FAN GUARD | 78128-2-4039 | EBM |
| 23 | 1 | AIR FILTER - $10 \times 10 \times 1$, MERV 8, PRE PLEAT 40 | 80055.01101 | FLANDERS |
| 24 | 4FT | ZINC/STEEL DIN RAIL EN 50022 (35mm x 7.5mm x 1ft order) | 0801733 | PHOENIX CONTACT |
| 25 | 45 | UNIVERSAL TERMINAL BLOCK - UT 4 | 3044102 | PHOENIX CONTACT |
| 26 | 8 | END PLATE | 3047028 | PHOENIX CONTACT |
| 27 | 9 | END STOP | 0800886 | PHOENIX CONTACT |
| 28 | 1 | JUMPER BAR, UT6 | 3030271 | PHOENIX CONTACT |
| 29 | 1 | TERMINAL GROUND BLOCK 8.2mm UT4-PE (24~12 AWG) | 3044128 | PHOENIX CONTACT |
| 30 | 4 | FUSE HOLDER - MINI FAST ACTING | 3046100 | PHOENIX CONTACT |
| 31 | 1 | ETHERNET SWITCH - 5 PORT, DIN RAIL MOUNTED | 2891152 | PHOENIX CONTACT |
| 32 | 1 | MEDIUM DANGER SIGN | DANGER3X3 | MISC |
| 33 | 2 | GROUND LUG | KA2U | BURNDY |
| 34 | 6FT | WIRE DUCT 2"WX2"H, WHITE (order by ft) | G2X2WH6 | PANDUIT |
| 35 | 6FT | DUCT COVER WHITE | C2WH6 | PANDUIT |
| 36 | 1 | CAT 6 CABLE - RJ45/RJ45, 600V RATED, SHIELDED, 10FT | CAT6600V10 | PROFESSIONAL CABLE |
| 37 | 1 | CAT 6 CABLE - RJ45/RJ45, 600V RATED, SHIELDED, 1FT | CAT6600V1 | PROFESSIONAL CABLE |
| 38 | 1 | SERIAL DEVICE SERVER - Nport 5200, SERIAL-TO-ETHERNET CONVERTER | NPORT 5230A | MOXA |
| 38A | 1 | DIN MOUNTING KIT - MOXA NPORT | DK35A | MOXA |
| *39* | *2* | SEAL FAIL RELAY - KBS PUMPSAFE | SUPPLIED BY OTHERS | KBS |
| 40 | 2 | 12 PIN SOCKET - 600V, 10A, SEAL FAIL MOUNTING SOCKET | SD12-PC | CUSTOM CONNECTOR |
| 41 | 1 | WINDOW KIT - 12" x 12", NEMA 12, HINGED | APWK1212H | HOFFMAN |
|  |  |  |  |  |

LCP - BILL OF MATERIAL

| ITEM | QTY | DESCRIPTION | CATALOG | MANUFACTURE |
| :---: | :---: | :--- | :--- | :--- |
| 1 | 1 | ENCLOSURE ,TYPE 12, GRAY, 4 PILOT DEVICE HOLES, 11" $\times 4.2^{\prime \prime}$ | E4PBX | HOFFMAN |
| 2 | 1 | SELECTOR SWITCH: 3 POS. MAINTAINED, 120VAC, 2NO - 2NC | ASD340NU | IDEC |
| 3 | 1 | PUSH BUTTON: GREEN, FLUSH, 120VAC, 1NO - 1NC | ABD111NUG | IDEC |
| 4 | 1 | PUSH BUTTON: RED, FLUSH, 120VAC, 1NO - 1NC | ABD111NUR | IDEC |
| 5 | 1 | PUSH BUTTON: RED MUSHROOM, PUSH LOCK - TURN RELEASE, 1 NC | AVD301NUR | IDEC |
|  |  |  |  |  |

## Data Sheets

## Variable speed drives <br> Altivar Process ATV600



ATV630•••N4F, ATV630•••M3, ATV630•••Y6, ATV650•••N4, ATV650•••N4E

Altivar Process variable speed drives are designed for use in two operating modes that can optimize the drive nominal rating according to the system constraints.

These two modes are:

- Normal duty (ND): Dedicated mode for applications requiring a slight overload (up to $110 \%$ ) with a motor power no higher than the drive nominal power
■ Heavy duty (HD): Dedicated mode for applications requiring a significant overload (up to $150 \%$ ) with a motor power no higher than the drive nominal power derated by one rating


## Accessories and options

Altivar Process drives are designed to take numerous accessories and options to increase their functionality and also their capacity for integration and adaptation.

## Accessories

- Drive:
- Fan kit (see page 2/12)
- Graphic display terminal
$\square$ Remote mounting kit for mounting on enclosure door (see page 2/15)
- Multidrop connection accessories for connecting several drives to the RJ45


## Options

- Modules (see page 2/24):
- Extended I/O module:
- 2 analog inputs
- 6 digital inputs
- 2 digital outputs
- Extended relay module:
- 3 NO contacts
- Communication:
- EtherNet/IP and Modbus TCP Dual port
- CANopen bus: RJ45 daisy chain, SUB-D, 5-way screw terminals
- PROFINET bus
- Profibus DP V1 bus
- DeviceNet bus
- BACnet MS/TP
- Passive filters (see page 2/34)
- Additional EMC input filters for reducing conducted emissions on the line (see page 2/39)
- Output filters:
- dv/dt filters (see page 2/43)
$\square$ Sinus filters (see page 2/46)


## Motor starters

Schneider Electric offers combinations of circuit breakers and contactors to be able to use Altivar Process drives in optimum conditions (see page 2/50).

Variable speed drives
Altivar Process ATV600
Three-phase supply voltage: $380 \ldots 480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Wall-mounting drives


ATV630D15N4


ATV630D30N4
$380 . .480 \mathrm{~V}(-15 \ldots 10 \%)$ IP21/UL Type 1 drives

| Motor |  |  | Line supply |  |  |  | Altivar Process |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power indicated on rating plate (1) |  |  | Line current (2) |  | Apparent power | Maximum prospective line Isc | Max. continuous current (1) | Max. transient current for 60 s | Reference(5) | Weight |
|  |  |  | 380 V | 480 V | 380 V |  |  |  |  |  |
| ND: | Norm | duty (3) |  |  |  |  |  |  |  |  |
| HD: | Heav | uty (4) |  |  |  |  |  |  |  |  |
|  | kW | HP | A | A | kVA | kA | A | A |  | $\underset{\mathrm{lb}}{\mathrm{~kg} /}$ |
| With category C2 integrated EMC filter |  |  |  |  |  |  |  |  |  |  |
| ND | 0.75 | 1 | 1.5 | 1.3 | 1.1 | 50 | 2.2 | 2.4 | ATV630U07N4 | $\begin{gathered} 4.500 / \\ 9.921 \end{gathered}$ |
| HD | 0.37 | 0.5 | 0.9 | 0.8 | 0.7 | 50 | 1.5 | 2.3 |  |  |
| ND | 1.5 | 2 | 3 | 2.6 | 2.2 | 50 | 4 | 4.4 | ATV630U15N4 | $\begin{gathered} 4.500 / \\ 9.921 \end{gathered}$ |
| HD | 0.75 | 1 | 1.7 | 1.5 | 1.2 | 50 | 2.2 | 3.3 |  |  |
| ND | 2.2 | 3 | 4.3 | 3.8 | 3.2 | 50 | 5.6 | 6.2 | ATV630U22N4 | $\begin{gathered} \hline 4.500 / \\ 9.921 \end{gathered}$ |
| HD | 1.5 | 2 | 3.1 | 2.9 | 2.4 | 50 | 4 | 6 |  |  |
| ND | 3 | - | 5.8 | 5.1 | 4.2 | 50 | 7.2 | 7.9 | ATV630U30N4 | $\begin{aligned} & 4.600 / \\ & 10.141 \end{aligned}$ |
| HD | 2.2 | 3 | 4.5 | 4 | 3.3 | 50 | 5.6 | 8.4 |  |  |
| ND | 4 | 5 | 7.6 | 6.7 | 5.6 | 50 | 9.3 | 10.2 | ATV630U40N4 | $\begin{aligned} & 4.600 / \\ & 10.141 \end{aligned}$ |
| HD | 3 | - | 6 | 5.4 | 4.5 | 50 | 7.2 | 10.8 |  |  |
| ND | 5.5 | 7.5 | 10.4 | 9.1 | 7.6 | 50 | 12.7 | 14 | ATV630U55N4 | $\begin{aligned} & 4.700 / \\ & 10.362 \end{aligned}$ |
| HD | 4 | 5 | 8 | 7.2 | 6.0 | 50 | 9.3 | 14 |  |  |
| ND | 7.5 | 10 | 13.8 | 11.9 | 9.9 | 50 | 16.5 | 18.2 | ATV630U75N4 | $\begin{aligned} & \hline 7.700 / \\ & 16.976 \end{aligned}$ |
| HD | 5.5 | 7.5 | 10.5 | 9.2 | 7.6 | 50 | 12.7 | 19.1 |  |  |
| ND | 11 | 15 | 19.8 | 17 | 14.1 | 50 | 23.5 | 25.9 | ATV630D11N4 | $\begin{aligned} & \hline 7.700 / \\ & 16.976 \end{aligned}$ |
| HD | 7.5 | 10 | 14.1 | 12.5 | 10.4 | 50 | 16.5 | 24.8 |  |  |
| ND | 15 | 20 | 27 | 23.3 | 19.4 | 50 | 31.7 | 34.9 | ATV630D15N4 | $\begin{array}{r} \hline 13.600 / \\ 29.983 \end{array}$ |
| HD | 11 | 15 | 20.6 | 18.1 | 15.0 | 50 | 23.5 | 35.3 |  |  |
| ND | 18.5 | 25 | 33.4 | 28.9 | 24 | 50 | 39.2 | 43.1 | ATV630D18N4 | $\begin{array}{r} 14.200 / \\ 31.306 \end{array}$ |
| HD | 15 | 20 | 27.7 | 24.4 | 20.3 | 50 | 31.7 | 47.6 |  |  |
| ND | 22 | 30 | 39.6 | 34.4 | 28.6 | 50 | 46.3 | 50.9 | ATV630D22N4 | $\begin{array}{r} 14.300 / \\ 31.526 \end{array}$ |
| HD | 18.5 | 25 | 34.1 | 29.9 | 24.9 | 50 | 39.2 | 58.8 |  |  |
| ND | 30 | 40 | 53.3 | 45.9 | 38.2 | 50 | 61.5 | 67.7 | ATV630D30N4 | $\begin{array}{r} 28.000 / \\ 61.729 \end{array}$ |
| HD | 22 | 30 | 40.5 | 35.8 | 29.8 | 50 | 46.3 | 69.5 |  |  |
| ND | 37 | 50 | 66.2 | 57.3 | 47.6 | 50 | 74.5 | 82 | ATV630D37N4 | $\begin{array}{r} 28.200 / \\ 62.170 \end{array}$ |
| HD | 30 | 40 | 54.8 | 48.3 | 40.2 | 50 | 61.5 | 92.3 |  |  |
| ND | 45 | 60 | 79.8 | 69.1 | 57.4 | 50 | 88 | 96.8 | ATV630D45N4 | $\begin{array}{r} \hline 28.700 / \\ 63.273 \end{array}$ |
| HD | 37 | 50 | 67.1 | 59.0 | 49.1 | 50 | 74.5 | 111.8 |  |  |

(1) These values are given for use in continuous operation with a nominal switching frequency of 4 kHz (ATV630U07N4...D45N4).

The switching frequency is adjustable from $2 \ldots 12 \mathrm{kHz}$ (ATV630U07N4...D45N4).
Above the nominal switching frequency, the drive will automatically reduce the switching frequency in the event of an excessive temperature rise.
For continuous operation above the nominal switching frequency, nominal drive current should be derated according to the derating curves in the Installation Manual.
(2) Typical value for the indicated motor power and for the maximum prospective line Isc.
(3) Values given for applications requiring a slight overload (up to 110\%).
(4) Values given for applications requiring a significant overload (up to 150\%).
(5) For ATV630 $\bullet \bullet N 4 Z$ cabinet integration products, see pages $3 / 6$ and $3 / 7$ in the cabinet integration section.

Note: Consult the summary tables of possible drive, option, and accessory combinations (see page 2/18).

| Presentation: | Configuration and runtime tools: | Combinations: |
| :--- | :--- | :--- |
| page $1 / 12$ | page $2 / 14$ | page $2 / 18$ |

## Variable speed drives <br> Altivar Process ATV600 Configuration and runtime tools



Remote mounting kit for mounting graphic display terminal on enclosure door (front panel)


Remote mounting kit for graphic display terminal (rear panel)


Example of multipoint screen architecture

## Accessories for graphic display terminal

■ Remote mounting kit for mounting on enclosure door with IP65/UL Type 12 degree of protection as standard
The kit comprises:

- Tightening tool (also sold separately under the reference ZB5AZ905)

1 Cover plate to maintain IP65 protection when there is no terminal connected
2 Mounting plate
3 RJ45 port for the graphic display terminal
4 Seal
5 Fixing nut
6 Anti-rotation pin
7 RJ45 port for connecting the remote-mounting cordset ( $10 \mathrm{~m} / 33 \mathrm{ft}$ maximum); Cordsets should be ordered separately depending on the length required.
8 Grounding connector
Drilling a hole with a standard $\varnothing 22$ tool, as used for a pushbutton, allows the unit to be mounted without needing a cut-out in the enclosure ( $\varnothing 22.5 \mathrm{~mm} / \varnothing 0.89 \mathrm{in}$. drill hole).

| References <br> Description | Length <br> $\mathrm{m} /$ | IP <br> rating | Reference |
| :--- | :--- | :--- | :--- | ---: |

## Multidrop connection accessories

These accessories are used to connect a graphic display terminal to several drives via a multidrop link. This multidrop connection uses the RJ45 terminal port on the front of the drive.

| Connection accessories |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description |  |  | Sold in lots of | Unit reference | Weight kg/ |
|  |  |  |  |  | lb |
| Modbus splitter box 10 RJ45 connectors and 1 screw terminal block |  |  | - | LU9GC3 | $\begin{array}{r} 0.500 / \\ 1.102 \end{array}$ |
| Modbus T-junction boxes | With $0.3 \mathrm{~m} / 0.98 \mathrm{ft}$ integrated cable |  | - | VW3A8306TF03 | $\begin{gathered} 0.190 / 2 \\ 0.419 \end{gathered}$ |
|  | With $1 \mathrm{~m} / 3.28 \mathrm{ft}$ integrated cable |  | - | VW3A8306TF10 | $\begin{array}{r} 0.210 / \\ 0.463 \\ \hline \end{array}$ |
| Modbus line terminator | For RJ45 connector | $\begin{aligned} & R=120 \Omega \\ & C=1 \mathrm{nf} \end{aligned}$ | 2 | VW3A8306RC | $\begin{array}{r} 0.010 / \\ 0.022 \end{array}$ |
| Cordsets (equipped with 2 RJ45 connectors) |  |  |  |  |  |
| Used for |  | Length m/ ft |  | Reference | Weight kg/ lb |
| Serial link |  | $\begin{aligned} & 0.31 \\ & 0.98 \end{aligned}$ |  | VW3A8306R03 | $\begin{array}{r} 0.025 / 1 \\ 0.055 \end{array}$ |
|  |  | $\begin{aligned} & \hline 1 / \\ & 3.28 \\ & \hline \end{aligned}$ |  | VW3A8306R10 | $\begin{array}{r} 0.060 / \\ 0.132 \\ \hline \end{array}$ |
|  |  | $\begin{aligned} & \hline 3 / \\ & 9.84 \\ & \hline \end{aligned}$ |  | VW3A8306R30 | $\begin{gathered} 0.130 / \\ 0.287 \\ \hline \end{gathered}$ |
| (1) Used to connect a remote PC to the RJ45 port on an IP21 drive mounted in an enclosure or on a wall. Drill hole with a standard $\varnothing 22$ tool, as used for a pushbutton. (Requires a remote-mounting cordset VW3A1104R•0• equipped with 2 RJ45 connectors.) <br> (2) Only compatible with ATV650 drives. |  |  |  |  |  |

## Ordering codes for Tmax XT2

Circuit breakers

## XT2HU3100BFF000XXX



Tmax XT2-circuit breaker

## Distribution circuit breakers

Tmax XT, XT2, 125A Frame, Thermal Magnetic-Fixed (TMF) and Adjustable (TMA) Protection with Front Terminals

| Amps | N (25kA) | S (35kA) | H (65kA) |
| :---: | :---: | :---: | :---: |
|  | U.S. Ordering Code | U.S. Ordering Code | U.S. Ordering Code |
| Thermal Magnetic-Fixed (TMF) |  |  |  |
| 15 | XT2N■*015AFF000XXX | XT2S■ 015AFF000XXX | XT2H■ 015AFF000XXX |
| 20 | XT2N■ 020AFF000xXX | XT2S■ 020AFF000XXX | XT2H■ 020AFF000XXX |
| 25 | XT2N■*025AFF000XXX | XT2S■ 025AFF000XXX | XT2H■ 025AFF000XXX |
| 30 | XT2N■ 030AFF000XXX | XT2S■ 030AFF000XXX | XT2H■ 030AFF000XXX |
| 35 | XT2N■*035AFF000XXX | XT2S■ 035AFF000XXX | XT2H■ 035AFF000XXX |
| 40 | XT2N■ 040AFF000XXX | XT2S■ 040AFF000XXX | XT2H■ 040AFF000XXX |
| 50 | XT2N■ 050AFF000XXX | XT2S■ 050AFF000XXX | XT2H■ 050AFF000XXX |
| 60 | XT2N■ 060AFF000XXX | XT2S■ 060AFF000XXX | XT2H■ 060AFF000XXX |
| 70 | XT2N■ 070AFF000XXX | XT2S■ 070AFF000XXX | XT2H■ 070AFF000XXX |
| Thermal Magnetic-Adjustable (TMA) |  |  |  |
| 80 | XT2N■*080BFF000XXX | XT2S■*080BFF000XXX | XT2H■ 080BFF000XXX |
| 90 | XT2N■*090BFF000XXX | XT2S■ 090BFF000XXX | XT2H■ 090BFF000XXX |
| 100 | XT2N■100BFF000XXX | XT2S■100BFF000XXX | XT2H■100BFF000XXX |
| 110 | XT2NU110BFF000XXX | XT2SU110BFF000XXX | XT2HU110BFF000XXX |
| 125 | XT2NU125BFF000XXX | XT2SU125BFF000XXX | XT2HU125BFF000XXX |

■ U for UL 80\% rated or Q for 100\% rated

- 3 for 3-pole or 4 for 4-pole

Tmax XT, XT2, 125A Frame, Thermal Magnetic-Fixed (TMF) and Adjustable (TMA) Protection with Front Terminals

| Amps | L (100kA) | V (150kA) | X (200kA) |
| :---: | :---: | :---: | :---: |
|  | U.S. Ordering Code | U.S. Ordering Code | U.S. Ordering Code |
| Thermal Magnetic-Fixed (TMF) |  |  |  |
| 15 | XT2L■*015AFF000XXX | XT2V■ 015AFF000XXX | XT2X■*015AFF000XXX |
| 20 | XT2L■ 020AFF000XXX | XT2V■ 020AFF000XXX | XT2X■020AFF000XXX |
| 25 | XT2L■*025AFF000XXX | XT2V■ 025AFF000XXX | XT2X■*025AFF000XXX |
| 30 | XT2L■ 030AFF000XXX | XT2V■ 030AFF000XXX | XT2X■030AFF000XXX |
| 35 | XT2L■ 035AFF000XXX | XT2V■ 035AFF000XXX | XT2X■035AFF000XXX |
| 40 | XT2L■*040AFF000XXX | XT2V■ 040AFF000XXX | XT2X■040AFF000XXX |
| 50 | XT2L■*050AFF000XXX | XT2V■ 050AFF000XXX | XT2X■050AFF000XXX |
| 60 | XT2L■*060AFF000XXX | XT2V■ 060AFF000XXX | XT2X■*060AFF000XXX |
| 70 | XT2L■*070AFF000XXX | XT2V■ 070AFF000XXX | XT2X■ 070AFF000XXX |
| Thermal Magnetic-Adjustable (TMA) |  |  |  |
| 80 | XT2L■*080BFF000XXX | XT2V■*080BFF000XXX | XT2X■*080BFF000XXX |
| 90 | XT2L■*090BFF000XXX | XT2V■ 090BFF000XXX | XT2X■090BFF000XXX |
| 100 | XT2L■ 100 BFF 000 XXX | XT2V■100BFF000XXX | XT2X■100BFF000XXX |
| 110 | XT2LU110BFF000XXX | XT2VU110BFF000XXX | XT2XU110BFF000XXX |
| 125 | XT2LU 125BFF000XXX | XT2VU125BFF000XXX | XT2XU 125BFF000XXX |

[^6]
## Compliance with standards

SACE ${ }^{\circledR}$ Tmax XT circuit-breakers and their accessories are constructed in compliance with ${ }^{1}$ :

- Standards:
- UL489 (MCCB File \# E93565 \& MCCB Accessories File \# E116596) and CSA C22.2;
- Directives:
- EC "Low Voltage Directive" (LVD) N 2014/35/EC;
- EC "Electromagnetic Compatibility Directive" (EMC) 2014/30/EC;
- Shipping Registers approvals upon request.


## Terminal options

## Fixed version:

The standard fixed version of the SACE ${ }^{\circledR}$ Tmax XT circuit breakers are supplied with front terminals (F) and can be fitted with the following types of terminals as accessories thanks to the special kits:

- Extended front (EF)
- Extended spread front (ES)
- Front for copper/aluminum cables (FCCuAI)
- Rear oriented (R)

Withdrawable versions:
Please see the Tmax XT Technical Catalog for more details.

## Trip unit options

- Thermal Magnetic Adjustable (TMA)
- Ekip Dip (LS/I, LSI, LIG, LSIG)
- Ekip M Dip (I)
- Ekip G Dip (LS/I)
- Molded Case Switch (MCS)


## Accessories

- Terminal Options
- Auxiliary Contacts
- Operating Mechanisms (Direct Handles, Extended Handles, Flange Handles, etc.)
- Remote Control (Shunt Trip, Undervoltage Release, Motor Operator, etc.)
- Safety and Protection (Terminal Covers, Phase Separators, Padlocks, Keylocks, IP Protection, etc.)
- Interlocks


## Included with the breaker

The breaker comes with breaker mounting hardware, terminal hardware, phase barriers, an insulation backplate, and lateral conduit for accessory wires.

## Temperature rating

Tmax XT circuit breakers can be used in ambient air temperatures varying between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$, and can be stored at temperatures between $-40^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$. Please consult the temperature performance derating tables for temperature values outside of $+40^{\circ} \mathrm{C}$. The reference temperature for the trip units is $+40^{\circ} \mathrm{C}$. Note that the lug and wire insulation ratings are $+75^{\circ} \mathrm{C}$, so care should be exercised when operating near this temperature in order not to exceed these ratings.

## 100\% rated

A Fixed XT6 breaker is suitable for continuous operation at 100-percent of rating up to 800A with electronic trip units and $90^{\circ} \mathrm{C}$ wire. The wire size shall be based on the ampacity of $75^{\circ} \mathrm{C}$ rated wire..

## Single phase application

XT6 three pole circuit breakers, equipped with thermal-magnetic trip units, can be used in single phase applications. For this purpose, they are marked as follows according to UL standard: Suitable for single phase application up to 600VAC.

## Reverse feed capabilities

Power can be supplied from the bottom terminals of the XT6 breaker up to the maximum voltage rating.

## Related links

Installation Instructions

## Drawings

- XT6 Fixed 3-4p breaker (2D)
- XT6 Fixed 3p breaker (3D)
- XT6 Fixed 4p breaker (3D)


## ABB Inc.

Customer Service
888-862-3290
abbinsidesalessupport@us.abb.com
Monday - Friday, 7am-5:30pm CST
Tech Support
888-437-3765
Monday - Friday, 7am-5pm CST

## Customer Service

88-862-3290
Monday - Friday, 7am - 5:30pm CST
Tech Support
Monday - Friday, 7am - 5pm CST

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB Inc. does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents-in whole or in partsis forbidden without prior written consent of ABB Inc. Copyright© 2021 ABB. All rights reserved.

## Main characteristics



Positive operation


Installation positions


Protection degrees


Test pushbutton

The references in round brackets ${ }^{(G x . x)}$ refer to the Glossary in the final chapter of the technical catalog.
All circuit breakers in the SACE Tmax XT family are made with the following construction characteristics:

- double insulation ${ }^{(61.5) ;}$
- positive operation ${ }^{(61.6)}$;
- isolation behavior ${ }^{(61.7) ;}$
- electromagnetic compatibility ${ }^{(G 1.8) \text {; }}$
- tropicalization ${ }^{(61.9)}$;
- impact and vibration resistance( ${ }^{(61.10)}$;
- power supply from the top towards the bottom or vice versa, except for over 480V on XT2 and over 600V on XT4;
- installation versatility. Circuit breaker can be mounted in a horizontal or vertical position or laid flat without any derating of rated characteristics;
- no nominal performance derating for use up to an altitude of $2000 \mathrm{~m} / 6561 \mathrm{ft}$. Above $2000 \mathrm{~m} / 6561 \mathrm{ft}$, atmospheric properties (air composition, dielectric strength, cooling power and pressure) change, affecting the main parameters that define the circuit breaker. The table below shows changes to the main performance parameters:

| Altitude |  | $2000 \mathrm{~m} /$ | $3000 \mathrm{~m} /$ | $4000 \mathrm{~m} /$ | $5000 \mathrm{~m} /$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | 6561 ft | 9842 ft | 13123 ft | 16404 ft |
| Rated employ voltage, Ue | $[\mathrm{V} \mathrm{AC]}$ | 600 | 528 | 468 | 408 |
| Rated uninterrupted current | $\%$ | 100 | 98 |  | 93 |

- SACE Tmax XT circuit breakers can be used in ambient temperatures between $-25^{\circ} \mathrm{C} /-13^{\circ} \mathrm{F}$ and $+70^{\circ} \mathrm{C} / 158^{\circ} \mathrm{F}$ and stored in ambient temperatures between $-40^{\circ} \mathrm{C} /-40^{\circ} \mathrm{F}$ and $+70^{\circ} \mathrm{C} / 158^{\circ} \mathrm{F}$. For temperatures outside these ranges, see the "Temperature performance" paragraph of the "Typical curves and technical information" chapter;
- different degrees of IP (International Protection) ${ }^{(G 1.11)^{2]} \text {; }}$

| Circuit-breaker |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | With front | Without front ${ }^{(1)}$ | With front for lever -FLD- | With rotary handles | With extended rotary handle and accessory IP54 | With high terminal covers HTC | With Iow terminal covers LTC |
| A | IP40 | IP20 | IP40 | IP40 | IP54 | IP40 | IP40 |
| B | IP20 | IP20 | IP20 | IP20 | IP20 | IP40 | IP40 |
| C | NC | NC | NC | NC | NC | IP40 | IP30 |

${ }^{(1)}$ During the installation of electrical accessories
NC Not classifiable
${ }^{(2)}$ IEC only

| Accessories |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
|  | Motor operator | Residual current | Residual current | Automatic transfer |  |
|  | MOD, MOE | devices | from switchboard | switch ATS021 and |  |
|  | or MOE-E |  | RCQ020 | ATS022 |  |
| On Front | IP30 | IP40 | IP41 | IP40 |  |

- all circuit breakers in the XT family have a pushbutton for performing the release test. The circuit breaker must be closed, with no current, while the test is being performed.


## Regulations and reference standards



Hologram


Naval Registers

## Conformity with Standards

SACE Tmax XT circuit breakers and their accessories are constructed in conformity with:

- Standard ${ }^{(66.1)}$ :
- UL 489;
- CSA C22.2 No. 5;
- IEC 60947-2;
- Directives ${ }^{(66.2):}$
- EC "Low Voltage Directive" (LVD) No 2006/95/EC (replacing 73/23/EEC and subsequent amendments);
- EC "Electromagnetic Compatibility Directive" (EMC) 2004/108/CE;
- Naval Registers ${ }^{(G 6.3)}$ (ask ABB SACE for the versions available):
- ABS.

Certification of conformity with the product Standards is carried out in the ABB SACE test laboratory (accredited by SINAL) in respect of the EN 45011 European Standard, by the Italian certification body ACAE (Association for Certification of Electrical Apparatus), member of the European LOVAG organization (Low Voltage Agreement Group) and by the Swedish certification body SEMKO belonging to the International IECEE organization.
The SACE Tmax XT series has a hologram on the front, obtained using special anti-forgery techniques. This ensures the quality and authenticity of the circuit breaker as a genuine $A B B$ SACE product.

## Company Quality System

The ABB SACE Quality System conforms to the following Standards:

- ISO 9001 International Standard;
- EN ISO 9001 (equivalent) European Standards;
- UNI EN ISO 9001 (equivalent) Italian Standards;
- IRIS International Railway Industry Standard.

The ABB SACE Quality System attained its first certification with the RINA certification body in 1990.

## Environmental management system, social responsibility and ethics

For ABB SACE, environmental protection is a top priority, as evidenced when ours was the first industry in Italy's electromechanical sector to have obtained the RINA's Environmental Management System certification in recognition of the company's commitment in conformity with the International ISO 14001 Standard.
In 1999, the Environmental Management System and the Occupational Health and Safety Management System were integrated according to the OHSAS 18001 Standard. In 2005, the SA 8000 (Social Accountability 8000) Standard was integrated, committing itself to respect business ethics and working conditions.
Our commitment to environmental protection is solidified through:

- selection of materials, processes and packaging which mitigate the true environmental impact of the product;
- use of recyclable materials;
- voluntary adherence to the RoHS directive ${ }^{(G 6.4)}$.

ISO 14001, 18001 and SA8000 recognitions together with ISO 9001 made it possible for ABB SACE to obtain RINA BEST FOUR CERTIFICATION.

## Identification of the SACE Tmax XT circuit breakers

The specifications of each circuit breaker appear on the rating name plate on both the front and side of the unit.

Front label


Side label


| $\mathbf{1}$ | Name and performance level | $\mathbf{9}$ | Interrupting ratings |
| :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | In: rated current | $\mathbf{1 0}$ | Rated service voltage |
| $\mathbf{3}$ | Reference standard UL489/CSA22.2 | $\mathbf{1 1}$ | Rated insulation voltage |
| $\mathbf{4}$ | Serial number | $\mathbf{1 2}$ | Rated impulse withstand voltage |
| $\mathbf{5}$ | UL marking | $\mathbf{1 3}$ | CE marking |
| $\mathbf{6}$ | CSA marking | $\mathbf{1 4}$ | Test pushbutton |
| $\mathbf{7}$ | Anti-forgery logo | $\mathbf{1 5}$ | Rated ultimate short-circuit breaking capacity |
| $\mathbf{8}$ | Symbol of isolation behavior | $\mathbf{1 6}$ | Rated short-circuit duty breaking capacity |

The tables below outline the logic behind the naming of each thermal magnetic and electronic trip unit.

| Magnetic trip units |  |  |
| :--- | :--- | :--- |
| Family name | + | A: with adjustable threshold |
| M: magnetic |  |  |


| Thermal magnetic trip units |  |  |
| :---: | :---: | :---: |
| Family name |  | Protection |
| TM: thermal magnetic | + | F: with fixed threshold <br> A: with adjustable thermal and magnetic threshold |

## Example:

- MA: magnetic only trip unit, with adjustable protection threshold (MCP);
- TMF: thermal magnetic trip unit, with fixed thermal and fixed magnetic protection threshold;

| Electronic trip units |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Family name |  | Application |  | Protection |
| Ekip | + | ....: Distribution <br> M: Motor protection <br> E: Energy measurements | + | 1 <br> LS/I <br> LSI <br> LSIG <br> LIU |

Example:

- Ekip LS/I: electronic trip unit for distribution networks protection, with "L" against overload and either "S" protection function against delay short circuit or "I" protection function against instantaneous short circuit;
- Ekip M-LIU: electronic trip unit for motor protection, with LIU protection functions.

| Residual current protection devices ${ }^{(1)}$ |  |  |
| :---: | :---: | :---: |
| Family name |  | Typology |
| RC | + | Inst: instantaneous type ' A ' <br> Sel: selective type ' A ' <br> Sel 200: selective type 'A' reduced to 200 mm <br> B Type: selective type 'B' |

## Ordering codes for Tmax XT accessories

## Power connection



Front extended terminal EF


Front extended spread terminal-ES

-
FC Cu terminal

-


FC CuAl internal terminal

Terminals for circuit breaker (cont.)

| Size | Type | 3 pcs (1122 kit for 3p) | 4 pcs (1/2 kit for 4p) |
| :---: | :---: | :---: | :---: |
|  |  | U.S. Ordering Code | U.S. Ordering Code |
| XT2 | FC CuAl terminals for CuAl cables 10-2/0 AWG | KXT2CUAL2-3PC | KXT2CUAL2-4PC |
| XT2 | FC CuAl terminals AuxV for CuAl cables 10-2/0 AWG | KXT2CUAL2C-3PC | KXT2CUAL2C-4PC |
| XT2 | FC Cu terminals for Cu cables 14-1/0 AWG | KXT2CU-3PC | KXT2CU-4PC |
| XT2 | MC Cu multi-cable terminals for Cu cables 6x14-2 AWG | KXT2MC-3PC | KXT2MC-4PC |
| XT2 | R rear adjustable terminals | KXT2ER-3PC | KXT2ER-4PC |
| XT2 | FB flexible busbar terminals | KXT2EFB-3PC | KXT2EFB-4PC |
| XT3 | F front terminals | KXT3F-3PC | KXT3F-4PC |
| XT3 | EF extended front terminals | KXT3EF-3PC | KXT3EF-4PC |
| XT3 | ES extended spread front terminals | KXT3ES-3PC | KXT3ES-4PC |
| XT3 | FC CuAl terminals AuxV for CuAl cables 14-1/0 AWG | KXT3CUAL1C-3PC | KXT3CUAL1C-4PC |
| XT3 | FC CuAl terminals for CuAl cables 14-1/0 AWG | KXT3CUAL1-3PC | KXT3CUAL1-4PC |
| XT3 | FC CuAl terminals AuxV for CuAl cables 4 AWG-300 Kcmil | KXT3CUAL2C-3PC | KXT3CUAL2C-4PC |
| XT3 | FC CuAl terminals for CuAl cables 4 AWG-300 Kcmil | KXT3CUAL2-3PC | KXT3CUAL2-4PC |
| XT3 | FC Cu terminals for Cu cables 10-250 AWG | KXT3CU-3PC | KXT3CU-4PC |
| XT3 | MC Cu multi-cable terminals for Cu cables 6x12-2 AWG | KХT3MC-3PC | KXT3MC-4PC |
| XT3 | R rear adjustable terminals | KXT3ER-3PC | KXT3ER-4PC |
| XT3 | FB flexible busbar terminals | KXT3EFB-3PC | KXT3EFB-4PC |
| XT3 | R-RC rear terminal for RC Inst-Sel | - | KXT3ERRC-4PC |
| XT4 | F front terminals | KXT4F-3PC | KXT4F-4PC |
| XT4 | EF extended front terminals | KXT4EF-3PC | KXT4EF-4PC |
| XT4 | ES extended spread front terminals | KXT4ES-3PC | KXT4ES-4PC |
| XT4 | FC CuAl terminals for CuAl cables 14-1/0 AWG | KXT4CUAL1-3PC | KXT4CUAL1-4PC |
| XT4 | FC CuAl terminals AuxV for CuAl cables 14-1/O AWG | KXT4CUAL1C-3PC | KXT4CUAL1C-4PC |
| XT4 | FC CuAl terminals for CuAl cables 4 AWG-300 Kcmil | KXT4CUAL2-3PC | KXT4CUAL2-4PC |
| XT4 | FC CuAl terminals AuxV for CuAl cables 4 AWG-300 Kcmil | KXT4CUAL2C-3PC | KXT4CUAL2C-4PC |
| XT4 | FC CuAl terminals for CuAl cables 3/0 AWG-350 Kcmil (1) | KXT4CUAL3-3PC | KXT4CUAL3-4PC |

## Ordering codes for Tmax XT accessories

## Operating mechanism

Heavy duty rotary mechanisms, shafts and pistol handles XT1...XT4

| Size | Description | U.S. Ordering Code |
| :---: | :---: | :---: |
| XT1-XT4 | RHE-B XT1...XT4 f/p metallic base | KXTMRHESTFP |
| XT1-XT4 | RHE-SS XT1..XT4 shaft support | KXTMRHESS |
| XT1-XT4 | 92 mm pistol handle shaft | OXP10X92 |
| XT1-XT4 | 148 mm pistol handle shaft | OXP10X148 |
| XT1-XT4 | 225 mm pistol handle shaft | OXP10X225 |
| XT1-XT4 | 500 mm pistol handle shaft | OXP10X500 |
| XT1-XT4 | 700 mm pistol handle shaft | OXP10X700 |
| XT1-XT4 | 900 mm pistol handle shaft | OXP10X900 |
| XT1-XT4 | Standard Pistol Hdl w/reset, 65mm, NEMA 3R,12 | OHB65J10B |
| XT1-XT4 | Emerg. Pistol Hdl w/reset, 65mm, NEMA 3R,12 | OHY65J10B |
| XT1-XT4 | Standard Pistol Hdl w/reset, 65mm, NEMA 4,4X | OHB65L10B |
| XT1-XT4 | Emerg. Pistol Hdl w/reset, 65mm, NEMA 4,4X | OHY65L10B |
| XT1-XT4 | Standard Pistol Hdl w/reset,125mm, NEMA 3R,12 | OHB125J10B |
| XT1-XT4 | Emerg. Pistol Hdl w/reset, 125 mm , NEMA 3R,12 | OHY125J10B |
| XT1-XT4 | Standard Pistol Hdl w/reset, 125mm, NEMA 4,4X | OHB125L10B |
| XT1-XT4 | Emerg. Pistol Hdl w/reset,125mm, NEMA 4,4X | OHY125L10B |

Spare parts for transmitted (rotary) handle

| Size | Description | Fixed/plug-in | Withdrawable |
| :--- | :--- | :--- | :--- |
|  | RHE-B base for transmitted handle | U. S. Ordering Code | U. S. Ordering Code |
| XT1-XT3 | RHE-B base for extended handle + 2PLL | KXTBRHEBFPPLK | - |
| XT2-XT4 | RHE-B base for transmitted handle | KXTCRHEBFP |  |
| XT2-XT4 | RHE-B base for extended handle + 2PLL | KXTCRHEBFPPLK | KXTCRHEBW |
| XT2-XT4 | Telescopic rod kit | KXTHRHETR | - |
| XT1-XT4 | RHE-S rod of 500mm | KXTARHES500 | - |
| XT1-XT4 | RHE-H normal transmitted handle | KXTARHEHST | - |
| XT1-XT4 | RHE-H emergency transmitted handle | KXTARHEHEM | - |
| XT1-XT4 | LH normal large handle | KXTALHNDLST | - |
| XT1-XT4 | LH large emergency handle | KXTALHNDLEM | - |

RHE NFPA handle

| Size | Type | U.S. Ordering Code |
| :--- | :--- | :--- |
| XT1-XT4 | RHE NFPA handle | KXTANFPAHDL |

## Line Reactors

# KDR Optimized Line Reactors <br> KLR Series Three Phase Line Reactors <br> DIN-Rail Line Reactors 

## KDR At The Input Of The Drive

KDR Optimized Line Reactors applied to the line side of a PWM drive will greatly improve the overall performance of the drive. The additional circuit inductance will reduce AC voltage waveform line notching, DC bus overvoltage trips, inverter overvoltage, poor total power factor, and cross-talk.

## Use KDR Low "Z" Units For:

These units can be used in any applications where traditionally either a $1.5 \%$ or $3 \%$ reactor would be applied.

## Reduction of nuisance tripping caused by:

- Transient voltages caused by capacitor switching
- Line notching
- DC bus overvoltage tripping
- Inverter overcurrent and overvoltage

Additional benefits include:

- Lowering injected percentage of harmonic current
- Improving true power factor
- Reducing cross-talk between drives


## Use KDR High "Z" Units For:

These units can be used in any rugged application where traditionally a $5 \%$ reactor would be applied.
KDR High " $Z$ " offers the same superior benefits as Low "Z" plus additional benefits which include:

- Helping prevent drive component damage
- Providing maximum harmonic mitigation without adding capacitance
- Further improving true power factor
- Adding impedance to drives with or without DC link chokes/reactors when more impedance is desired due to a relatively stiff source.


## Watts Loss

The watts loss shown above are based on the effects of increased losses in both the core steel laminations and wire due to the presence of harmonic currents. Consideration of eddy currents in the watts loss calculation is important. The watt losses in the reactor core caused by eddy currents are proportional to the harmonic frequency squared. The harmonic current levels were derived from a typical 6 pulse converter as follows:



Harmonic Current Distortion without KDR


Harmonic Current Distortion with KDR


Transient Voltage without KDR


Transient Voltage with KDR

## KDR Optimized Line Reactors



Part Numbering System


NEMA 1 Sizes: 1-5, 7

* For enclosed unit dimensions and added weight, please refer to the Reactor Enclosure Price Page


## Product Data Sheet

## POWER DISTRIBUTION BLOCK

$134 \times 572$
Replace " $x$ " with 1, 2, or 3 for number of poles

## Wire Range

- Line: (1) 3/0-\#14 AWG (70mm² - $2.5 \mathrm{~mm}^{2}$ )
- Load: (1) 3/0-\#14 AWG (70mm² - $2.5 \mathrm{~mm}^{2}$ )


## Electrical Ratings

- 200 Amps
- 600V per UL 1953 \& CSA 22.2 No.158, class B \& C requirements
- Short Circuit Current Rating (SCCR): See SCCR section for specifications
- CU7AL $-75^{\circ} \mathrm{C}$ connector terminal rating with copper or aluminum wire
- Factory \& Field Wiring


## Agency Compliance

- UL Listed, Investigated to UL 1953, File OPQS7.E309401


## Material Information

- Insulator base:
-Thermoplastic
- Flammability rating of insulator base UL94V0
- Insulator base temperature rating: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (UL RTI)
- Connector: aluminum, tin plated
- Line terminal set screws: aluminum, tin plated
- Load terminal set screw: steel, zinc plated
- Connector mounting screws: steel, zinc plated
- RoHS compliant


## Product Data Sheet

## Termination Specifications

| Line and Load Side | Wire Size (CU Stranded) | Torque | Wires / Terminal | Wire Class (UL) ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 3/0 | 20.3 N.m (180 lbf in) | 1 | B, C |
|  | 2/0-2 | 20.3 N.m (180 lbf in) | 1 | B, C, G, H, I (DLO) |
|  | 4 | 20.3 N.m (180 lbf in) | 1 | G, H, I (DLO) |
|  |  |  | 1-2 | B, C |
|  | 6-8 | 20.3 N.m (180 lbf in) | 1-2 | B, C, G, H, I (DLO) |
|  | 10 | 5.6 N.m (50 lbf. in) | 1-4 | B, C |
|  |  |  | 1-2 | G, H, I (DLO) |
|  | 12-14 | 5.6 N.m (50 lbf. in) | 1-4 | B. C |
|  |  |  | 1 | G, H, I (DLO) |

- Aluminum stranded wire range: 3/0 - \#6 AWG
- Wire strip length: 7/8 in. (18mm)
- Copper solid wire range: \#10-\#14
- Terminal screw drive: 1/4" Hex
${ }^{1}$ For information on copper stranded wire classes please visit: http://www.marathonsp.com/flexible-stranded-wire.php


## Product Data Sheet

## Short Circuit Current Ratings (SCCR)

- The suitable conductor ranges are limited to the table values only for achieving the SCCR in excess of the default rating of 10,000A.
- Other conductor combinations within the "Terminal Specifications" noted are suitable for achieving a SCCR of 10,000A (the default rating of terminal blocks).
- Enclosure size - For SCCR's greater than the default of $10 K A$, the minimum enclosure size is $16 \times 12 \times 6$. When using the default rating, there are no enclosure limitations other than proper fit of the product.

| Wire Class | Suitable Conductors |  | Max Overcurrent Protection Fuse Required Amp Rating / Class |  |  |  |  |  | SCCR <br> RMS Sym. <br> Amps 600V. Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Line | Load | $J$ | T | RK1 | RK5 | G | CC |  |
| B, C | 3/0-8 | 3/0-8 | 300 | 300 | 200 | 100 | 60 | 30 | 100,000 |
| G, H, I (DLO) | 2/0-8 | 2/0-8 | 300 | 300 | 200 | 100 | 60 | 30 | 100,000 |
| * | 3/0-14 | 3/0-14 | None (Default Rating) |  |  |  |  |  | 10,000 |

[^7]
## Product Data Sheet

## Installation \& Accessories

- Mounting (Panel):
- For use with \#10 fastener. ( \#8 washer recommended with SHCS)
- Mounting torque to be determined in end use application not to exceed 30 in lbs (3.4 N.m)
- Cover:
- Snap on hinge cover available upon request
- Catalog number:
- For 3-Pole (1343xxx), CH1343
- For 2-Pole (1342xxx), CH1342
- For 1-Pole (1341xxx), CH1341
- Cover is back thermoplastic


## Drawing



## Transformers

## Open Core and Coil Transformers Machine Tool and Control Power

## Description

Type IP transformers are core and coil units designed for machine tool, industrial control, panelboard, and general-purpose applications. These designs are now welded core and encapsulated to provide the highest quality electrical performance. The transformer coil is completely surrounded by epoxy, making the unit impervious to external elements. The lamination core is welded to provide superior quiet performance.
Several types of terminations are available to simplify installation. These include primary and secondary leads out, integral fuse, and spade-type terminals and our standard which is a touch proof terminal block. Consult your local GE Sales Office for complete technical applications data.
-Standards: Type IP units conform to NEMA ST20. They are UL
listed under UL-506, File E-2739, and C-UL listed.
-Insulation Classes: Generally, 150 VA and below are $105^{\circ} \mathrm{C}$ insulation class, $55^{\circ} \mathrm{C}$ rise. 200 VA and above are $185^{\circ} \mathrm{C}$ (NEMA), $180^{\circ} \mathrm{C}$ (UL) insulation class, $115^{\circ} \mathrm{C}$ rise. Maximum surface temperature rise is $65^{\circ} \mathrm{C}$ above ambient.
-Frequency: 60 Hertz is standard; 50 Hertz is available as
an option.
-Voltage Regulation: All designs 2.0 kVA and below are compensated for voltage drop. Generally, this compensation compensated for voltage drop. Generally, this compensation
ranges from $10 \%$ in the smallest rating to $3 \%$ for the largest. All machine tool designs meet or exceed NMTBA regulation requirements.
-Series-Multiple Secondary Connections: Transformers with 120/240 V secondaries (series-multiple) may be connected for $120 \mathrm{~V}, 240 \mathrm{~V}$ or $240 / 120 \mathrm{~V}$ three-wire. Jumpers are provided.
-Overcurrent Protection: Type IP transformers are low impedance transformers that require overcurrent protection for most applications. They provide for optional integral primary and/or secondary fusing.
-Mounting Dimensions: Type IP transformers are lightweight, small, and designed for minimum mounting dimensions. Many units will fit competitors mounting footprints. These include primary and secondary leads out, integral fuse, ?

Machine Tool
Machine Tool Applications: Single-Phase (9T58K)Product Tables14-2
Control: Single-Phase (9T58K) Product Tables ..... 14-3
Options and Fusing Guide ..... 14-5
Machine Tool Applications: Wiring Diagrams ..... 14-6
Outlines and Dimensions ..... 14-7
CE-Rated
Product Tables (9T58E) ..... 14-8
Dry-Type/Cased
Isolated, General Purpose, Single-Phase,(9T51B and 9T21B) Product Tables14-9
Isolated, CE-Rated (9T51E) Product Tables ..... 14-12
Dimensions and Weights ..... 14-13
Wiring Diagrams ..... 14-14

Transformers

Machine Tool Applications
Single-Phase
60 Hz Terminal Board Connection

| Input Voltage | Output Voltage | KVA | Frame Size | Inrush VA @ . 20 PF, 95\% Sec. Volt | Wiring Diagram No. ${ }^{1}$ | Product Number | $\begin{gathered} \text { List Price } \\ \text { GO-80 } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 0.05 | 6100 | 193 | 1 | 9 958K0042 | \$25.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 0.075 | 6125 | 303 | 1 | 9T58K0043 | \$29.00 |
| 220 $\times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 0.1 | 8100 | 396 | 1 | $9 \mathrm{~T} 58 \mathrm{K0044}$ | \$33.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 0.15 | 8150 | 724 | 1 | 9T58K0045 | \$37.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 0.2 | 8175 | 821 | 1 | 9T58K0046 | \$46.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 0.25 | 8200 | 1034 | 1 | 9 958K0047 | \$54.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 0.3 | 8250 | 1037 | 1 | 9T58K0048 | \$60.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 0.375 | 8250 | 1441 | 1 | 9T58K0049 | \$69.50 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 0.5 | 10225 | 2027 | 1 | 9T58K0050 | \$79.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 0.75 | 12225 | 3092 | 1 | 9T58K0051 | \$110.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 1 | 12300 | 4494 | 1 | 9T58K0052 | \$135.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 1.5 | 14225 | 5156 | 1 | 9T58K0053 | \$185.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 2 | 14300 | 9193 | 1 | 9T58K0054 | \$249.00 |
| $220 \times 440,230 \times 460,240 \times 480$ Volts | 110, 115, 120 Volts | 3 | 14475 | 14513 | 1 | 9T58K0055 | \$331.00 |

50/60 Hz Terminal Board Connection

| Input Voltage | Output Voltage | KVA | Frame Size | Inrush VA @ . 20 PF, 95\% Sec. Volt | Wiring Diagram No. ${ }^{1}$ | Product <br> Number | $\begin{gathered} \text { List Price } \\ \text { GO-80 } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 230/460/575 Volts | 115/95 Volts | 0.05 | 6100 | 196 | 2 | 9 T 58 K 0062 | \$36.00 |
| 230/460/575 Volts | 115/95 Volts | 0.075 | 8100 | 278 | 2 | $9 \mathrm{~T} 58 \mathrm{K0063}$ | \$42.00 |
| 230/460/575 Volts | 115/95 Volts | 0.1 | 8150 | 445 | 2 | $9 \mathrm{~T} 58 \mathrm{K0064}$ | \$45.00 |
| 230/460/575 Volts | 115/95 Volts | 0.15 | 8200 | 663 | 2 | 9T58K0065 | \$57.50 |
| 230/460/575 Volts | 115/95 Volts | 0.2 | 8200 | 864 | 2 | 9 T 58 K 0066 | \$65.00 |
| 230/460/575 Volts | 115/95 Volts | 0.25 | 8250 | 1137 | 2 | $9 \mathrm{~T} 58 \mathrm{K0067}$ | \$77.00 |
| 230/460/575 Volts | 115/95 Volts | 0.3 | 10225 | 1412 | 2 | $9 \mathrm{~T} 58 \mathrm{K0068}$ | \$87.00 |
| 230/460/575 Volts | 115/95 Volts | 0.375 | 10225 | 1670 | 2 | 9T58K0069 | \$96.00 |
| 230/460/575 Volts | 115/95 Volts | 0.5 | 10225 | 1822 | 2 | 9 T 58 K 0070 | \$104.00 |
| 230/460/575 Volts | 115/95 Volts | 0.75 | 12300 | 3524 | 2 | $9 \mathrm{~T} 58 \mathrm{K0071}$ | \$140.00 |
| 230/460/575 Volts | 115/95 Volts | 1 | 14225 | 4392 | 2 | 9 T 58 K 0072 | \$194.00 |
| 230/460/575 Volts | 115/95 Volts | 1.5 | 14300 | 6753 | 2 | 9 T 58 K 0073 | \$251.00 |
| 230/460/575 Volts | 115/95 Volts | 2 | 14475 | 11563 | 2 | 9 T 58 K 0074 | \$306.00 |
| 208/277/380 Volts | 115/95 Volts | 0.05 | 6150 | 217 | 3 | $9 \mathrm{~T} 58 \mathrm{K0082}$ | \$36.00 |
| 208/277/380 Volts | 115/95 Volts | 0.075 | 8100 | 322 | 3 | 9T58K0083 | \$42.00 |
| 208/277/380 Volts | 115/95 Volts | 0.1 | 8150 | 464 | 3 | 9 T 58 K 0084 | \$45.00 |
| 208/277/380 Volts | 115/95 Volts | 0.15 | 8200 | 761 | 3 | 9T58K0085 | \$57.50 |
| 208/277/380 Volts | 115/95 Volts | 0.2 | 8200 | 837 | 3 | 9 T 58 K 0086 | \$65.00 |
| 208/277/380 Volts | 115/95 Volts | 0.25 | 8250 | 1198 | 3 | $9 \mathrm{~T} 58 \mathrm{K0087}$ | \$77.00 |
| 208/277/380 Volts | 115/95 Volts | 0.3 | 10225 | 1409 | 3 | 9 T 58 K 0088 | \$87.00 |
| 208/277/380 Volts | 115/95 Volts | 0.375 | 10225 | 1674 | 3 | $9 \mathrm{~T} 58 \mathrm{K0089}$ | \$96.00 |
| 208/277/380 Volts | 115/95 Volts | 0.5 | 10225 | 1821 | 3 | $9 \mathrm{~T} 58 \mathrm{K0090}$ | \$104.00 |
| 208/277/380 Volts | 115/95 Volts | 0.75 | 12300 | 3771 | 3 | 9T58K0091 | \$140.00 |
| 208/277/380 Volts | 115/95 Volts | 1 | 14225 | 4234 | 3 | 9 T 58 K 0092 | \$194.00 |
| 208/277/380 Volts | 115/95 Volts | 1.5 | 14300 | 7091 | 3 | 9 T 58 K 0093 | \$251.00 |
| 208/277/380 Volts | 115/95 Volts | 2 | 14475 | 11729 | 3 | 9T58K0094 | \$306.00 |

1See page 14-6 for wiring diagrams.

Factory- or Field-Installed Options
Secondary Fusing-Factory- or field-installed secondary fuse clips are available. They are restricted to units with terminal strips and a single secondary voltage or secondary with one tap.
Dual Primary and Secondary Fusing-Factory- or field-installed dual primary and secondary fusing is available on all units, including leads out and multiple secondary voltages.
Leads Out-Terminal strip is replaced by rugged primary and secondary leads emanating from the top of the encapsulated coil.

Transformers

## Machine Tool Applications

## Control

Wiring Diagrams


Diagram 2


Diagram 3


Diagram 4


Diagram 5


Diagram 6


Diagram 7


Diagram 8

## Transformers

## Open Core and Coil Transformers Outlines and Dimensions

6,8 and 10 Frame

| Frame size | KVA | Approx. Net Weight (Lbs.) | A Depth (in.) | B Width (in.) | C Height (in.) | Mounting Depth E (in.) | Mounting Width F (in.) | Mounting Slot (in.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6100 | 0.05 | 2.6 | 4 | 3.06 | 2.68 | 2.16 | 2.5 | . $219 \times .750$ |
| 6125 | 0.075 | 3 | 4.25 | 3.06 | 2.68 | 2.41 | 2.5 | . $219 \times .750$ |
| 8100 | 0.1 | 3.9 | 4.12 | 3.81 | 3.28 | 2.16 | 3.12 | . $219 \times .750$ |
| 8150 | 0.15 | 5.5 | 4.62 | 3.81 | 3.28 | 2.66 | 3.12 | . $219 \times .750$ |
| 8175 | 0.2 | 6.3 | 4.88 | 3.81 | 3.28 | 2.91 | 3.12 | . $219 \times .750$ |
| 8200 | 0.25 | 7 | 5.12 | 3.81 | 3.28 | 3.16 | 3.12 | . $219 \times .750$ |
| 8250 | 0.375 | 8.3 | 5.62 | 3.81 | 3.28 | 3.66 | 3.12 | . $219 \times .750$ |
| 10225 | 0.5 | 11.6 | 5.75 | 4.56 | 3.9 | 3.38 | 3.75 | . $297 \times .580$ |
| 12225 | 0.75 | 13 | 5.81 | 5.31 | 4.56 | 3.38 | 4 | . $297 \times .580$ |
| 12300 | 1 | 17.5 | 6.56 | 5.31 | 4.56 | 4.13 | 4 | . $297 \times .580$ |
| 14225 | 1.5 | 29 | 6.31 | 6.81 | 5.81 | 3.38 | 5.5 | . $297 \times .580$ |
| 14300 | 2 | 35.5 | 7.06 | 6.81 | 5.81 | 4.13 | 5.5 | . $297 \times .580$ |
| 14475 | 3 | 51.5 | 8.81 | 6.81 | 5.81 | 5.88 | 5.5 | . $297 \times .580$ |



Terminal Board Connection Style


Leads Out Connection Style

## CLASS CC KLDR SERIES FUSES

$600 \mathrm{Vac} \cdot 300 \mathrm{Vdc} \cdot$ Time-Delay • 1110-30 A
(UL) © $\mathbb{C} \in \mathrm{RoHS}$


## Description

KLDR fuses are time-delay fuses designed to protect control transformers, solenoids and similar inductive components with high magnetizing currents during the first half-cycle. They provide excellent protection of motor branch circuits containing IEC or NEMA rated motor controllers or contactors.

## Features/Benefits

- Meets UL and CSA standards
- Class CC fuses are the smallest 600 V, 200,000 A.I.R. fuses approved for branch circuit protection
- Rejection feature prevents use of fuses with lower interrupting ratings or voltage ratings when used with corresponding fuse holders
- Extremely current limiting reduces damage caused by heating and magnetic effects of short-circuit currents


## Applications

- Transformer Protection


## Web Resources

For additional informations, visit:

## littelfuse.com/kldr

## Recommended Fuse Holders

L60030C Series
LPSC Touch-Safe Series

## Specifications

| Voltage Rating | AC: 600 V |
| :--- | :--- |
|  | DC: 300 V |
| Amperage Rating | $1 / 10-30 \mathrm{~A}$ |
| Interrupting Rating | AC: 200 kA rms symmetrical |
|  | DC: 20 kA |
| Material | Body: Melamine |
|  | Caps: Nickel-plated Bronze |
| Fuse Weight | .019 lb (8.62g) |
| Approvals | AC: Standard 248-4, Class CC |
|  | UL Listed $1 / 10-30 \mathrm{~A}$ (File: E81895) |
|  | CSA Certified $1 / 10-30 \mathrm{~A}$ (File: LR29862) |
|  | DC: Littelfuse self-certified |
| Environmental | RoHS Compliant |
| Country of Origin | Mexico |

## Ordering Information

| AMPERAGE RATINGS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $1 / 10$ | $6 / 10$ | $18 / 10$ | $41 / 2$ | 10 |
| $1 / 8$ | $3 / 4$ | 2 | 5 | 12 |
| $15 / 100$ | $8 / 10$ | $21 / 4$ | $56 / 10$ | 15 |
| $3 / 16$ | 1 | $21 / 2$ | 6 | $171 / 2$ |
| $2 / 10$ | $11 / 8$ | $28 / 10$ | $61 / 4$ | 20 |
| $1 / 4$ | $11 / 4$ | 3 | 7 | 25 |
| $3 / 10$ | $14 / 10$ | $32 / 10$ | $71 / 2$ | 30 |
| $4 / 10$ | $11 / 2$ | $31 / 2$ | 8 | - |
| $1 / 2$ | $16 / 10$ | 4 | 9 | - |

## Part Numbering System



## Dimensions Inches (mm)



## 迄 Littelfuse

## AiL $L \quad C_{i} \quad F$

$i \quad t$
2 tS T F FL S i
(4L) 『 PL

ELECT ICAL CHA ACTE ISTICS

| $\mathbf{A}$ <br> $\mathbf{t i}$ | $\mathbf{A}$ | $\mathbf{i}$ |
| :---: | :---: | :--- |
| $135 \%$ | $1 / 10-30$ | 1 hour, $\mathbf{t i} \quad$ imum |
|  | $32 / 10-30$ | 12 seconds, i imum |
| $200 \%$ | $0-3$ | 5 seconds, i imum |

AGENC APP ALS Listed by Underwriters Laboratories and Certified by CSA.
INTE PTING ATING 10,000 amperes at 250 VAC.
F SES T IL SPEC See F09B type in Military Section.
PATENTE
E ING INF ATI N

| $\begin{aligned} & C^{t i} \\ & C^{t} \\ & N \end{aligned}$ | ${ }^{\text {A }}$ | $A C \underset{t i}{t}$ |  |
| :---: | :---: | :---: | :---: |
| FL 1/10 | . 100 | 250 | 188.0 |
| FL 15/100 | . 150 | 250 | 87.0 |
| FL 2/10 | . 200 | 250 | 35.109 |
| FL 1/4 | . 250 | 250 | 5.413 |
| FL 3/10 | . 300 | 250 | 3.79 |
| FL 4/10 | . 400 | 250 | 2.10 |
| FL 1/2 | . 500 | 250 | 1.54 |
| FL 6/10 | . 600 | 250 | 1.024 |
| FL 8/10 | . 800 | 250 | . 623 |
| FL 1 | 1 | 250 | . 395 |
| FL 11/8 | 1.125 | 250 | . 356 |
| FL 11/4 | 1.25 | 250 | . 286 |
| FL 14/10 | 1.4 | 250 | . 253 |
| FL 11/2 | 1.5 | 250 | . 219 |
| FL 16/10 | 1.6 | 250 | . 184 |
| FL 18/10 | 1.8 | 250 | . 162 |
| FL 2 | 2 | 250 | . 125 |
| FL $21 / 4$ | 2.25 | 250 | . 102 |
| FL $2^{1 / 1 / 2}$ | 2.5 | 250 | . 0904 |
| FL ${ }^{8 / 10}$ | 2.8 | 250 | . 0735 |
| FL 3 | 3 | 250 | . 0700 |
| FL 32/10 | 3.2 | 250 | . 0576 |
| FL 3 ${ }^{1 / 2}$ | 3.5 | 250 | . 0517 |
| FL 4 | 4 | 250 | . 0426 |
| FL 41⁄2 | 4.5 | 250 | . 0360 |
| FL 5 | 5 | 250 | . 0413 |
| FL 56/10 | 5.6 | 250 | . 0326 |
| FL 6 | 6 | 250 | 0280 |
| FL 61/4 | 6.25 | 250 | . 0277 |
| FL 7 | 7 | 250 | . 02133 |
| FL 8 | 8 | 250 | . 01247 |
| FL 9 | 9 | 250 | . 01066 |
| FL 10 | 10 | 250 | . 00903 |
| FL 12 | 12 | 250 | . 00698 |
| FL 15 | 15 | 250 | . 00530 |
| FL 20 | 20 | 250 | . 00385 |
| FL 25 | 25 | 250 | . 00275 |
| FL 30 | 30 | 250 | . 00226 |



A


## $5 \times 20 \mathrm{~mm}$ Fast-Acting Fuse 217/227 Series

$\qquad$

- Designed to International (IEC) Standards for use globally.
- Meets the IEC 60127-2, Sheet 2 specification for Fast-Acting Fuses.
- Available in Cartridge and Axial Lead Form.
- Available in ratings of 0.032 to 10 amperes.

ELECTRICAL CHARACTERISTICS:

| \% of Ampere <br> Rating | Ampere <br> Rating | Opening <br> Time |
| :---: | :---: | :---: |
| $150 \%$ | $.032-.100$ | 60 minutes, Minimum |
|  | $.125-6.3$ | 60 minutes, Minimum |
| $210 \%$ | $.032-.100$ | 30 minutes, Maximum |
|  | $.125-6.3$ | 30 minutes, Maximum |
| $275 \%$ | $.032-.100$ | 0.01 sec., Min.; 5 sec. Max. |
|  | $.125-6.3$ | 0.05 sec., Min.; 2 sec. Max. |
| $400 \%$ | $.032-.100$ | .003 sec., Min.; 0.1 sec. Max. |
|  | $.125-6.3$ | .01 sec., Min.; 0.3 sec. Max. |
| $1000 \%$ | $.032-.100$ | .02 second, Maximum |
|  | $.125-6.3$ | .02 second, Maximum |

AGENCY APPROVALS: Sheet I IEC 60127-2:* SEMKO, VDE approved thru 6.3 amps . BSI approved $0.4-6.3 \mathrm{amps}$.
Recognized under the Components Program of Underwriters
Laboratories and recognized by CSA.
UL recognized to 6.3A only.
INTERRUPTING RATING: 35 amperes or 10 x rated current; whichever is greater.

## ORDERING INFORMATION:

| Cartridge <br> Catalog <br> Number | Axial Lead <br> Catalog <br> Number | Ampere <br> Rating | Voltage <br> Rating | Nominal <br> Resistance <br> Cold Ohms | Nominal <br> Melting I ${ }^{2}$ t <br> A $^{2}$ Sec. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 217.032 | 227.032 | .032 | 250 | 262.2 | 0.000048 |
| 217.040 | 227.040 | .040 | 250 | 183.2 | 0.000074 |
| 217.050 | 227.050 | .050 | 250 | 15.20 | 0.00020 |
| 217.063 | 227.063 | .063 | 250 | 10.43 | 0.00057 |
| 217.080 | 227.080 | .080 | 250 | 7.88 | 0.00085 |
| 217.100 | 227.100 | .100 | 250 | 5.10 | 0.0034 |
| 217.125 | 227.125 | .125 | 250 | 3.68 | 0.0049 |
| 217.160 | 227.160 | .160 | 250 | 2.53 | 0.011 |
| 217.200 | 227.200 | .200 | 250 | 1.65 | 0.025 |
| 217.250 | 227.250 | .250 | 250 | 1.18 | 0.043 |
| 217.315 | 227.315 | .315 | 250 | 0.810 | 0.110 |
| 217.400 | 227.400 | .400 | 250 | 0.277 | 0.130 |
| 217.500 | 227.500 | .500 | 250 | 0.210 | 0.225 |
| 217.630 | 227.630 | .630 | 250 | 0.168 | 0.420 |
| 217.800 | 227.800 | .800 | 250 | 0.134 | 0.870 |
| 2217001 | 227001 | 1 | 250 | 0.096 | 1.07 |
| 2171.25 | 2271.25 | 1.25 | 250 | 0.070 | 2.29 |
| 21701.6 | 22701.6 | 1.6 | 250 | 0.046 | 4.74 |
| 217002 | 227002 | 2 | 250 | 0.040 | 5.88 |
| 21702.5 | 22702.5 | 2.5 | 250 | 0.033 | 9.72 |
| 2173.15 | 2273.15 | 3.15 | 250 | 0.022 | 18.2 |
| 217004 | 227004 | 4 | 250 | 0.016 | 30.0 |
| 217005 | 227005 | 5 | 250 | 0.013 | 43.9 |
| 21706.3 | 22706.3 | 6.3 | 250 | 0.0098 | 64.2 |
| 217008 | 227008 | $8^{*}$ | 250 | 0.0068 | 203.5 |
| 217010 | 227010 | $10^{*}$ | 250 | 0.0060 | 223.5 |
|  |  |  |  |  |  |

*IEC Standards for $5 \times 20 \mathrm{~mm}$ fuses do not include ratings above 6.3 amperes, but are under consideration.


217000 XE 227000 Series


## Average Time Current Curves



227 Series is used for North American ordering.

## Key features

- SPDT through 4PDT, 10A contacts
- Compact power type relays
- Miniature power relays with a large capacity
- 10A contact capacity
- Compact size saves space
©


Part Number Selection

| Contact | Model | Part Number |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Blade Terminal | PCB Terminal | Coil Voltage Code (Standard Stock in bold) |
| SPDT | Standard | RH1B-U $\square$ | RH1V2-U $\square$ | AC6V, AC12V, AC24V, AC110V, AC120V, AC220V, AC240V DC6V, DC12V, DC24V, DC48V, DC110V |
|  | With Indicator | RH1B-UL $\square$ | - |  |
|  | With Check Button | RH1B-UC $\square$ | - |  |
|  | With Indicator and Check Button | RH1B-ULC $\square$ | - |  |
|  | Top Bracket Mounting | RH1B-UT $\square$ | - |  |
|  | With Diode (DC coil only) | RH1B-UD $\square$ | RH1V2-UD $\square$ | DC6V, DC12V, DC24V, DC48V, DC110V |
|  | With Indicator and Diode (DC coil only) | RH1B-ULD $\square$ | - | DC12V, DC24V, DC48V, DC110V |
| DPDT | Standard | RH2B-U $\square$ | RH2V2-U $\square$ | AC6V, AC12V, AC24V, AC110-120V, <br> AC220-240V <br> DC6V, DC12V, DC24V, DC48V, DC100-110V |
|  | With Indicator | RH2B-UL $\square$ | RH2V2-UL $\square$ |  |
|  | With Check Button | RH2B-UC $\square$ | - |  |
|  | With Indicator and Check Button | RH2B-ULC $\square$ | - |  |
|  | Top Bracket Mounting | RH2B-UT $\square$ | - |  |
|  | With Diode (DC coil only) | RH2B-UD $\square$ | RH2V2-UD $\square$ | DC6V, DC12V, DC24V, DC48V, DC100-110V |
|  | With Indicator and Diode (DC coil only) | RH2B-ULD $\square$ | RH2V2-ULD $\square$ |  |
| 3PDT | Standard | RH3B-U $\square$ | RH3V2-U $\square$ | AC6V, AC12V, AC24V, AC110V, AC120V, AC220V, AC240V DC6V, DC12V, DC24V, DC48V, DC110V |
|  | With Indicator | RH3B-UL $\square$ | RH3V2-UL $\square$ |  |
|  | With Check Button | RH3B-UC $\square$ | - |  |
|  | With Indicator and Check Button | RH3B-ULC $\square$ | - |  |
|  | Top Bracket Mounting | RH3B-UT $\square$ | - |  |
|  | With Diode (DC coil only) | RH3B-UD $\square$ | - | DC6V, DC12V, DC24V, DC48V, DC110V |
|  | With Indicator and Diode (DC coil only) | RH3B-ULD $\square$ | - |  |
| 4PDT | Standard | RH4B-U $\square$ | RH4V2-U $\square$ | AC6V, AC12V, AC24V, AC110V, AC120V, AC220V, AC240V DC6V, DC12V, DC24V, DC48V, DC110V |
|  | With Indicator | RH4B-UL $\square$ | RH4V2-UL $\square$ |  |
|  | With Check Button | RH4B-UC $\square$ | - |  |
|  | With Indicator and Check Button | RH4B-ULC $\square$ | - |  |
|  | Top Bracket Mounting | RH4B-UT $\square$ | - |  |
|  | With Diode (DC coil only) | RH4B-UD $\square$ | RH4V2-UD $\square$ | DC6V, DC12V, DC24V, DC48V, DC110V |
|  | With Indicator and Diode (DC coil only) | RH4B-ULD $\square$ | - |  |

PCB terminal relays are designed to mount directly to a circuit board without any socket.

## Ordering Information

When ordering, specify the Part No. and coil voltage code:
(example) RH3B-U AC120V


Sockets (for Blade Terminal Models)


Hold Down Springs \& Clips

| Appearance | Item | Relay | For DIN Mount Socket | For Through Panel \& PCB Mount Socket |
| :---: | :---: | :---: | :---: | :---: |
|  | Pullover Wire Spring | RH1B | SY2S-02F1 ${ }^{2}$ | SY4S-51F1 |
|  |  | RH2B | SY4S-02F1 ${ }^{2}$ |  |
|  |  | RH3B | SH3B-05F1 ${ }^{2}$ |  |
|  |  | RH4B | SH4B-02F1 ${ }^{2}$ |  |
|  | Leaf Spring (side latch) | RH1B, RH2B, RH3B, RH4B | SFA-202 ${ }^{3}$ | SFA-302 ${ }^{3}$ |
|  | Leaf Spring (top latch) | RH1B, RH2B, RH3B, RH4B | SFA-101 ${ }^{3}$ | SFA-301 ${ }^{3}$ |

## AC Coil Ratings

| Voltage (V) | Rated Current (mA) $\pm 15 \%$ at $20^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  | $\begin{aligned} & \text { Coil Resistance ( } \Omega \text { ) } \\ & \pm 10 \% \text { at } 20^{\circ} \mathrm{C} \end{aligned}$ |  |  |  | Operation Characteristics (against rated values at $20^{\circ} \mathrm{C}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AC 50Hz |  |  |  | AC 60 Hz |  |  |  |  |  |  |  |  |  |  |
|  | SPDT | DPDT | 3PDT | 4PDT | SPDT | DPDT | 3PDT | 4PDT | SPDT | DPDT | 3PDT | 4PDT | Max. Continuous Applied Voltage | Pickup Voltage | Dropout Voltage |
| 6 | 170 | 240 | 330 | 387 | 150 | 200 | 280 | 330 | 330 | 9.4 | 6.4 | 5.4 |  |  |  |
| 12 | 86 | 121 | 165 | 196 | 75 | 100 | 140 | 165 | 165 | 39.3 | 25.3 | 21.2 |  |  |  |
| 24 | 42 | 60.5 | 81 | 98 | 37 | 50 | 70 | 83 | 83 | 153 | 103 | 84.5 |  |  |  |
| 110 | 9.6 | - | 18.1 | 21.6 | 8.4 | - | 15.5 | 18.2 | 18.2 | - | 2,200 | 1,800 |  |  |  |
| 110-120 | - | $\begin{aligned} & 9.4- \\ & 10.8 \end{aligned}$ | - | - | - | 8.0-9.2 | - | - | - | - | - | - | 110\% | 80\% <br> maximum | $30 \%$ <br> minimum |
| 120 | 8.6 | - | 16.4 | 19.5 | 7.5 | - | 14.2 | 16.5 | 16.5 | - | 10,800 | 7,360 |  |  |  |
| 220 | 4.7 | - | 8.8 | 10.7 | 4.1 | - | 7.7 | 9.1 | 9.1 | - | 10,800 | 7,360 |  |  |  |
| 220-240 | - | 4.7-5.4 | - | - | - | 4.0-4.6 | - |  | - | 18,820 | - | - |  |  |  |
| 240 | 4.9 | - | 8.2 | 9.8 | 4.3 | - | 7.1 | 8.3 | 8.3 | - | 12,100 | 9,120 |  |  |  |

## DC Coil Ratings

| Voltage <br> (V) | Rated Current (mA) $\pm 15 \%$ at $20^{\circ} \mathrm{C}$ |  |  |  | $\begin{aligned} & \text { Coil Resistance ( } \Omega \text { ) } \\ & \pm 10 \% \text { at } 20^{\circ} \mathrm{C} \end{aligned}$ |  |  |  | Operation Characteristics (against rated values at $20^{\circ} \mathrm{C}$ ) |  |  |  | Standard coil voltages are in BOLD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SPDT | DPDT | 3PDT | 4PDT | SPDT | DPDT | 3PDT | 4PDT | Max. Continuous Applied Voltage | Pickup Voltage | Dropout <br> Voltage |  |  |
| 6 | 128 | 150 | 240 | 250 | 47 | 40 | 25 | 24 | 110\% | 80\% <br> maximum | $\begin{aligned} & 10 \% \\ & \text { minimum } \end{aligned}$ |  |  |
| 12 | 64 | 75 | 120 | 125 | 188 | 160 | 100 | 96 |  |  |  |  |  |
| 24 | 32 | 36.9 | 60 | 62 | 750 | 650 | 400 | 388 |  |  |  |  |  |
| 48 | 18 | 18.5 | 30 | 31 | 2,660 | 2,600 | 1,600 | 1,550 |  |  |  |  |  |
| 100-110 | - | 8.2-9.0 | - | - | - | 12,250 | - | - |  |  |  |  |  |
| 110 | 8 | - | 12.8 | 15 | 13,800 | - | 8,600 | 7,340 |  |  |  |  |  |

## Contact Ratings

| Maximum Contact Capacity |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | Continuous Current | Allowable Contact Power |  | Rated Load |  |  |
|  |  | Resistive Load | Inductive Load | Voltage (V) | Res. Load | Ind. Load |
| SPDT | 10A | $\begin{aligned} & \text { 1540VA } \\ & 300 \mathrm{~W} \end{aligned}$ | $\begin{aligned} & \text { 990VA } \\ & \text { 210W } \end{aligned}$ | 110 AC | 10A | 7A |
|  |  |  |  | 220 AC | 7A | 4.5A |
|  |  |  |  | 30 DC | 10A | 7 A |
| $\begin{aligned} & \text { DPDT } \\ & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$ | 10A | $\begin{aligned} & \text { 1650VA } \\ & \text { 300W } \end{aligned}$ | $\begin{aligned} & \text { 1100VA } \\ & \text { 225W } \end{aligned}$ | 110 AC | 10A | 7.5A |
|  |  |  |  | 220 AC | 7.5A | 5A |
|  |  |  |  | 30 DC | 10A | 7.5A |

Note: Inductive load for the rated load $-\cos \varnothing=0.3, L / R=7 \mathrm{~ms}$

## TÜV Ratings

| TÜV Ratings |
| :--- |
| Voltage |
| 240 V AC |
| 30 V DC |

## UL Ratings

| Voltage | Resistive |  |  | General Use |  |  | Horsepower Rating |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { RH1 } \\ & \text { RH2 } \end{aligned}$ | RH3 | RH4 | $\begin{aligned} & \text { RH1 } \\ & \text { RH2 } \end{aligned}$ | RH3 | RH4 | $\begin{aligned} & \text { RH1 } \\ & \text { RH2 } \end{aligned}$ | RH3 | RH4 |
| 240 V AC | 10A | 7.5A | 7.5A | 7A | 6.5 A | 5A | 1/3 HP | 1/3 HP | - |
| 120 V AC | - | 10A | 10A | - | 7.5A | 7.5A | 1/6 HP | 1/6 HP | - |
| 30 V D | 10A | 10A | - | 7A | - | - | - | - | - |
| 28 V DC | - | - | 10A | - | - | - | - | - | - |

CSA Ratings

| Voltage | Resistive |  |  |  | General Use |  |  |  | Horsepower Rating |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | RH1 | RH2 | RH3 | RH4 | RH1 | RH2 | RH3 | RH4 | RH1, 2, 3 |
| 240 V AC | 10A | 10A | - | 7.5A | 7 A | 7 A | 7A | 5A | 1/3 HP |
| 120 V AC | 10A | 10A | 10A | 10A | 7.5A | 7.5A | - | 7.5A | $1 / 6 \mathrm{HP}$ |
| 30V DC | 10A | 10A | 10A | 10A | 7 A | 7.5A | - | - | - |

## Socket Specifications



Accessories

| Item | Appearance | Use with | Part No. | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| Aluminum <br> DIN Rail <br> (1 meter length) |  |  | All DIN rail sockets | BNDN1000 | | The BNDN1000 is designed to accommodate DIN mount sockets. |
| :--- |
| Made of durable extruded aluminum, the BNDN1000 measures 0.413 |
| $(10.5 \mathrm{~mm})$ in height and $1.37($ (35mm) in width (DIN standard). Standard |
| length is $399^{\prime \prime}(1,000 \mathrm{~mm})$. |

## Specifications

| Contact Material |  | Silver cadmium oxide |
| :---: | :---: | :---: |
| Contact Resistance ${ }^{1}$ |  | $50 \mathrm{~m} \Omega$ maximum |
| Minimum Applicable Load |  | 24 V DC, $30 \mathrm{~mA} ; 5 \mathrm{~V}$ DC, 100 mA (reference value) |
| Operating Time ${ }^{2}$ | $\begin{aligned} & \text { SPDT } \\ & \text { DPDT } \end{aligned}$ | 20ms maximum |
|  | $\begin{aligned} & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$ | 25 ms maximum |
| Release Time ${ }^{2}$ | $\begin{aligned} & \text { SPDT } \\ & \text { DPDT } \end{aligned}$ | 20ms maximum |
|  | $\begin{aligned} & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$ | 25 ms maximum |
| Power Consumption (approx.) | SPDT | AC: $1.1 \mathrm{VA}(5 \mathrm{~Hz})$, 1VA (60Hz) |
|  | DPDT | AC: $1.4 \mathrm{VA}(50 \mathrm{~Hz}), 1.2 \mathrm{VA}(60 \mathrm{~Hz})$ |
|  | 3PDT | AC: 2VA (50Hz), 1.7VA (60Hz) |
|  | 4PDT | AC: $2.5 \mathrm{VA}(5 \mathrm{OHz}), 2 \mathrm{VA}(6 \mathrm{OHz})$ |
| Insulation Resistance |  | 100M 2 minimum (500V DC megger) |
| Dielectric Strength ${ }^{3}$ | SPDT | Between live and dead parts: $2,000 \mathrm{~V} \mathrm{AC}, 1$ minute <br> Between contact and coil: $2,000 \mathrm{~V} \mathrm{AC}, 1$ minute <br> Between contacts of the same pole: $1,000 \mathrm{~V} \mathrm{AC}, 1$ minute |
|  | $\begin{aligned} & \text { DPDT } \\ & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$ | Between live and dead parts: $2,000 \mathrm{~V} \mathrm{AC}, 1$ minute <br> Between contact and coil: $2,000 \mathrm{VAC}, 1$ minute <br> Between contacts of different poles: $2,000 \mathrm{~V} \mathrm{AC}, 1$ minute  <br> Between contacts of the same pole: $1,000 \mathrm{VAC}, 1$ minute  |
| Operating Frequency |  | Electrical: 1,800 operations/hour maximum <br> Mechanical: 18,000 operations/hour maximum |
| Vibration Resistance |  | Damage limits: 10 to 55 Hz , amplitude 0.5 mm <br> Operating extremes: 10 to 55 Hz , amplitude 0.5 mm |
| Shock Resistance |  | Damage limits: $1,000 \mathrm{~m} / \mathrm{s}^{2}(100 \mathrm{G})$ <br> Operating extremes: $200 \mathrm{~m} / \mathrm{s}^{2}(20 \mathrm{G}-\mathrm{SPDT}$, DPDT) <br>  $100 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G}-3 P D T, 4 P D T)$ |
| Mechanical Life |  | 50,000,000 operations minimum |
| Electrical Life | DPDT | 500,000 operations minimum (120V AC, 10A) |
|  | $\begin{aligned} & \text { SPDT } \\ & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$ | 200,000 operations minimum (120V AC, 10A) |
| Operating Temperature ${ }^{4}$ | SPDT <br> DPDT <br> 3PDT <br> 4PDT | -25 to $+70^{\circ} \mathrm{C}$ (no freezing) |
| Operating Humidity |  | 45 to 85\% RH (no condensation) |
| Weight (approx.) |  | SPDT: 24g, DPDT: 37g, 3PDT: 50g, 4PDT: 74g |

Note: Above values are initial values.

1. Measured using $5 \mathrm{~V} D \mathrm{C}, 1 \mathrm{~A}$ voltage drop method
2. Measured at the rated voltage (at $20^{\circ} \mathrm{C}$ ), excluding contact bouncing

Release time of relays with diode: 40 ms maximum
3. Relays with indicator or diode: 1000 V AC, 1 minute
4. For use under different temperature conditions, refer to Continuous Load Current vs. Operating Temperature Curve. The operating temperature range of relays with indicator or diode is -25 to $+40^{\circ} \mathrm{C}$.

## RTE Series - Analog Timers

## Key features of the RTE series include:

- 20 time ranges and 10 timing functions
- Time delays up to 600 hours
- Space-saving package
- High repeat accuracy of $\pm 0.2 \%$
- ON and timing OUT LED indicators
- Standard 8- or 11-pin and 11-blade termination
- 2 form C delayed output contacts

- 10A Contact Rating


## General Specifications

| Operation System |  |  | Solid state CMOS Circuit |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Operation Type |  |  | Multi-Mode |  |  |
| Time Range |  |  | 0.1 sec to 600 hours |  |  |
| Pollution Degree |  |  | 2 (IE60664-1) |  |  |
| Over voltage category |  |  | III (IE60664-1) |  |  |
| Rated Operational Voltage |  | AF20 | $100-240 \mathrm{~V}$ AC( $50 / 60 \mathrm{~Hz}$ ) |  |  |
|  |  | AD24 | 24 V AC(50/60Hz)/24V DC |  |  |
|  |  | D12 | 12V DC |  |  |
| Voltage Tolerance |  | AF20 | 85-264V AC(50/60Hz) |  |  |
|  |  | AD24 | 20.4-26.4V AC( $50 / 60 \mathrm{~Hz}$ )/21.6-26.4V DC |  |  |
|  |  | D12 | 10.8-13.2V DC |  |  |
| Input off Voltage |  |  | Rated Voltage $\times 10 \%$ minimum |  |  |
| Ambient Operating Temperature |  |  | -20 to $+65^{\circ} \mathrm{C}$ (without freezing) |  |  |
| Ambient Storage and Transport Temperature |  |  | -30 to $+75^{\circ} \mathrm{C}$ (without freezing) |  |  |
| Relative Humidity |  |  | 35 to 85\%RH (without condensation) |  |  |
| Atmospheric Pressure |  |  | 80 kPa to 110 kPa (Operating), 70 kPa to 110 kPa (Transport) |  |  |
| Reset Time |  |  | 100 msec maximum |  |  |
| Repeat Error |  |  | $\pm 0.2 \%, \pm 20 \mathrm{msec}{ }^{*}$ |  |  |
| Voltage Error |  |  | $\pm 0.2 \%, \pm 20 \mathrm{msec}{ }^{*}$ |  |  |
| Temperature Error |  |  | $\pm 0.5 \%, \pm 20 \mathrm{msec} *$ |  |  |
| Setting Error |  |  | $\pm 10 \%$ maximum |  |  |
| Insulation Resistance |  |  | 100M 2 minimum (500V DC) |  |  |
| Dielectric Strength |  |  | Between power and output terminals: 2000 V AC, 1 minute |  |  |
|  |  |  | Between contacts of different poles: 2000V AC, 1 minute |  |  |
|  |  |  | Between contacts of the same pole:1000V AC, 1 minute |  |  |
| Vibration Resistance |  |  | 10 to 55 Hz amplitude $0.5 \mathrm{~mm}^{2}$ hours in each of 3 axes |  |  |
| Shock Resistance |  |  | Operating extremes: $98 \mathrm{~m} / \mathrm{sec}^{2}$ (10G) |  |  |
|  |  |  | Damage limits: $490 \mathrm{~m} / \mathrm{sec}^{2}$ (50G) |  |  |
|  |  |  | 3 times in each of 3 axes |  |  |
| Degree of Protection |  |  | IP40 (enclosure) (IEC60529) |  |  |
| Power Consumption (Approx.) | TYPE |  | RTE-P1, -B1 |  | RTE-P2, -B2 |
|  | AF20 | 120 V AC/60Hz | 6.5VA |  | 6.6VA |
|  |  | 240 V AC/60Hz | 11.6VA |  | 11.6VA |
|  | 24 V AC 60Hz/DC |  | 3.4VA/1.7W |  | 3.5VA/1.7W |
|  | D12 |  | 1.6 W |  | 1.6W |
| Mounting Position |  |  | Free |  |  |
| Dimensions |  | RTE-P1, P2 | $40 \mathrm{Hx} 36 \mathrm{~W} \times 77.9 \mathrm{~mm}$ |  |  |
|  |  | RTE-B1, B2 | $40 \mathrm{Hx} 36 \mathrm{~W} \times 74.9 \mathrm{Dmm}$ |  |  |
| Weight (Approx.) |  |  | RTE-P1 | RTE-P2 | RTE-B1, -B2 |
|  |  |  | 87g | 89g | 85 g |

## Contact Ratings

| Contact Configuration |  | 2 Form C, DPDT (Delay output) |
| :---: | :---: | :---: |
| Allowable Voltage / Allowable Current |  | 240V AC, 30V DC / 10A |
| Maximum Permissible Operating Frequency |  | 1800 cycles per hour |
| Rated Load | Resistive | 10A 240V AC, 30V DC |
|  | Inductive | 7 A 240 V AC, 30V DC |
|  | Horse Power Rating | 1/6 HP 120V AC, 1/3 HP 240V AC |
| Life | Electrical | 500,000 op. minimum (Resistive) |
|  | Mechanical | 50,000,000 op. minimum |

 Cert. No. BL960813332355 (LVD, RTE)


## Part Numbering Guide

RTE series part numbers are composed of 4 part number codes. When ordering a RTE series part, select one code from each category.
Example: RTE-P1AF20

(1) Series


(3) Function
Group
(4) Input Voltage

Part Numbers: RTE Series

|  | Description | Part Number Code | Remarks |
| :---: | :---: | :---: | :---: |
| (1) Series | RTE series | RTE | For internal circuits, see next page. |
| (2) Terminal Style | Pin | P | Select one only. |
|  | Blade | B |  |
| (3) Function Group | ON-delay, interval, cycle OFF, cycle ON | 1 | Each function group has different timing functions. |
|  | ON-delay, cycle OFF, cycle ON, signal ON/OFF delay, OFF-delay, one-shot | 2 | See page 794. |
| (4) Input Voltage | 100 to 240V AC(50/60Hz) | AF20 |  |
|  | 24 V AC( $50 / 60 \mathrm{~Hz}$ )/24V DC | AD24 |  |
|  | 12V DC | D12 |  |

## Part Numbers

| Voltage | Power Triggered |  | Start Input Triggered |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Blade | 11-Pin | Blade |  |
| 12V DC | RTE-P1D12 | RTE-B1D12 | RTE-P2D12 | RTE-B2D12 |
| 24V AC/DC | RTE-P1AD24 | RTE-B1AD24 | RTE-P2AD24 | RTE-B2AD24 |
| $100-240$ V AC | RTE-P1AF20 | RTE-B1AF20 | RTE-P2AF20 | RTE-B2AF20 |

Time Range Determined by Time Range Selector and Dial Selector

|  | Dial | 0-1 | 0-3 | 0-10 | 0-30 | 0-60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { © } \\ & \text { 츧 } \\ & \text { 区 } \end{aligned}$ | Second | $0.1 \mathrm{sec}-1 \mathrm{sec}$ | $0.1 \mathrm{sec}-3 \mathrm{sec}$ | $0.2 \mathrm{sec}-10 \mathrm{sec}$ | $0.6 \mathrm{sec}-30 \mathrm{sec}$ | $1.2 \mathrm{sec}-60 \mathrm{sec}$ |
|  | Minute | $1.2 \mathrm{sec}-1 \mathrm{~min}$ | $3.6 \mathrm{sec}-3 \mathrm{~min}$ | $12 \mathrm{sec}-10 \mathrm{~min}$ | $36 \mathrm{sec}-30 \mathrm{~min}$ | $1.2 \mathrm{~min}-60 \mathrm{~min}$ |
|  | Hour | $1.2 \mathrm{~min}-1 \mathrm{hr}$ | 3.6 min - 3 hr | $12 \mathrm{~min}-10 \mathrm{hr}$ | $36 \mathrm{~min}-30 \mathrm{hr}$ | $1.2 \mathrm{hr}-60 \mathrm{hr}$ |
|  | 10 Hours | $12 \mathrm{~min}-10 \mathrm{hr}$ | $36 \mathrm{~min}-30 \mathrm{hr}$ | $2 \mathrm{hr}-100 \mathrm{hr}$ | $6 \mathrm{hr}-300 \mathrm{hr}$ | $12 \mathrm{hr}-600 \mathrm{hr}$ |

## Timing Diagrams

## RTE-P1, -B1



1. RTE-B1: Do not apply voltage to terminals \#2, \#5 \& \#8.
2. IDEC sockets are as follows: RTE-P1: SR2P-06* pin type socket, RTE-B1: SR3B-05* blade type socket, (*-may be followed by suffix letter A,B,C or U).

A: ON-Delay 1 (power start)
Set timer for desired delay, apply power to coil. Contacts transfer after preset time has elapsed, and remain in transferred position until timer is reset. Reset occurs with removal of power.


## C: Cycle 1 (power start, OFF first)

Set timer for desired delay, apply power to coil. First transfer of contacts occurs after preset delay has elapsed, after the next elapse of preset delay contacts return to original position. The timer now cycles between on and off as long as power is applied (duty ratio 1:1).


## Timing Diagrams con't

## RTE-P2, -B2



1. RTE-P2: Do not apply voltage to terminals \#5, \#6 \& \#7
2. RTE-B2: Do not apply voltage to terminals \#2, \#5 \& \#8.
3. IDEC sockets are as follows: RTE-P2: SR3P-05* pin type socket, RTE-B2: SR3B-05* blade type socket, ( ${ }^{*}$-may be followed by suffix letter A,B,C or U).

A: ON-Delay 2 (signal start)
When a preset time has elapsed after the start input turned on while power is on, the NO output contact goes on.


C: Cycle 4 (signal start, ON first)
When the start input turns on while power is on, the NO contact goes on. The output oscillates at a preset cycle (duty ratio 1:1).


E: Signal OFF-Delay
When power is turned on while the start input is on, the NO output contact goes on. When a prese time has elapsed after the start input turned off, the NO output contact goes off.


B: Cycle 2 (signal start, OFF first)
When the start input turns on while power is on, the output oscillates at a preset cycle (duty ratio 1:1), starting while the NO contact off.


D: Signal ON/OFF-Delay
When the start input turns on while power is on, the NO output contact goes on. When a preset time has elapsed while the start input remains on, the output contact goes off. When the start input turns off, the NO contact goes on again. When a preset time has elapsed after the start input turned off, the NO contact goes off.


F: One-Shot (signal start)
When the start input turns on while power is on, the NO output contact goes on. When a preset time has elapsed, the NO output contact goes off.


Accessories
DIN Rail Mounting Accessories
DIN Rail/Surface Mount Sockets and Hold-Down Springs
Style
11-Pin Screw Terminal
(dual tier)
8-Pin Screw Terminal
11-Pin FingerSafe Socket
8-Pin Fingersafe Socket
11-Blade Screw Terminal
Length 1000 mm Part Number

Panel Mounting Accessories
Flush Panel Mount Adapter and Sockets that use an Adapter

| Accessory | Description | Appearance | Use with | Part No. |
| :---: | :---: | :---: | :---: | :---: |
| Panel Mount Adapter | Adaptor for flush panel mounting RTE timers |  | All RTE timers | RTB-G01 |
| Sockets for use with Panel Mount Adapter | 8-pin screw terminal | (Shown: SR6P-M08G Wiring Socket Adapter) | RTE-P1 | SR6P-M08G |
|  | 11-pin screw terminal |  | RTE-P2 | SR6P-M11G |
|  | 8-pin solder terminal |  | RTE-P1 | SR6P-S08 |
|  | 11-pin solder terminal |  | RTE-P2 | SR6P-S11 |



## Dimensions

## Panel Mount Adapter <br> RTE Timer, 8-Pin and 11-Pin with SR6P-S08 or SR6P-S11



RTE Timer, 8-Pin with SR6P-M08G



RTE Timer, 11-Pin with SR6P-M11G


## Illuminated Pushbuttons (Assembled)



## Assembled Illuminated Pushbuttons



1. Use only when interpreting part numbers. Do not use for developing part numbers
2. All transformers step down to 6 V .

| Extended Lens | Full Voltage | $\begin{aligned} & \text { 1NO-1NC } \\ & \text { 2NO } \\ & \text { 2NC } \end{aligned}$ | $\begin{aligned} & \text { ALD2(311DNU(2) } \\ & \hline \text { ALD2320DNU(2) } \\ & \text { ALD2302DNU(2) } \end{aligned}$ | AOLD2(311DNU(2) AOLD2320DNU(2) AOLD2302DNU(2) |
| :---: | :---: | :---: | :---: | :---: |
|  | Transformer | $\begin{gathered} \text { 1NO-1NC } \\ \text { 2NO } \\ \text { 2NC } \end{gathered}$ | ALD2 (4) 11DNU(2) ALD2 (4) 20DNU(2) ALD2 (4) 02DNU(2) | AOLD2 (4) 11DNU(2) AOLD2 (4) 20DNU(2) AOLD2 (4) 02DNU(2) |
| Extended Lens with Full Shroud | Full Voltage | $\begin{gathered} \text { 1NO-1NC } \\ \text { 2NO } \\ \text { 2NC } \end{gathered}$ | ALFD2(311DNU(2) ALFD2(320DNU(2) ALFD2(302DNU(2) | AOLFD2(311DNU(2) AOLFD2(320DNU(2) A0LFD2(302DNU(2) |
|  | Transformer | $\begin{gathered} \text { 1NO-1NC } \\ \text { 2NO } \\ \text { 2NC } \end{gathered}$ |  | AOLFD2 (4) 11DNU(2) AOLFD2 (4) 20DNU(2) AOLFD2 (4) 02DNU(2) |
| ø 40 mm Mushroom Lens | Full Voltage | $\begin{aligned} & \text { 1NO-1NC } \\ & \text { 2NO } \\ & \text { 2NC } \end{aligned}$ | ALD3(311DNU(2) ALD3(320DNU(2) ALD3(302DNU(2) | AOLD3(311DNU(2) AOLD3(320DNU(2) A0LD3(302DNU(2) |
|  | Transformer | $\begin{gathered} \text { 1NO-1NC } \\ \text { 2NO } \\ \text { 2NC } \end{gathered}$ | ALD3 (4) 11DNU(2) ALD3 (4) 20DNU(2) ALD3 (4) 02DNU(2) | AOLD3 (44 11DNU(2) AOLD3 (4) 20DNU(2) A0LD3 (4) 02DNU(2) |

2 Lens Color Codes

| Color | Code |
| :---: | :---: |
| Amber | A |
| Green | G |
| Red | R |
| Blue | S |
| White | W |
| Yellow | Y |

Full Voltage Codes

| Voltage | Code |
| :---: | :---: |
| $6 \mathrm{~V} \mathrm{AC} / D C$ | 66 |
| $12 \mathrm{~V} \mathrm{AC} / D C$ | 11 |
| $24 \mathrm{~V} \mathrm{AC} / D C$ | 22 |
| 120 V AC/DC | QH2 |
| 240 V AC | QM4 |

(4) Transformer Voltage Codes

| Voltage | Code |
| :---: | :---: |
| 120VAC | 126 |
| 240VAC | 246 |
| 480VAC | 486 |


| 6V secondary voltage |
| :--- |
| (uses 6V LED). |

1. In place of (2), specify the Lens Color Code.
2. In place of (3), specify the Full Voltage Code (LED voltage).
3. In place of $(4$, specify the Transformer Voltage Code.
4. Light is independent of switch position.
5. Yellow pushbutton comes with white LED only.


[^8]2. Custom key removal codes available. Please contact IDEC for details.

## Non-Illuminated Selector Switches (Assembled)

## Non-Illuminated 2-Position Selector Switches

| Style |  |  |  |  | Part Number |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| せ | $\begin{aligned} & \text { 을 } \\ & \text { 右 } \\ & \text { ㅁ } \end{aligned}$ | Operator Position |  |  | Maintained | Spring Return from Right | Spring Return from Left |
| ¢ |  |  |  |  |  |  |  |
| 1N0 | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & X \\ & 0 \end{aligned}$ | Knob Lever Key | ASD210NU ASD2L10NU ASD2K10NU | ASD2110NU ASD21L10NU ASD21K10NU | ASD2210NU ASD22L10NU ASD22K10NU |
| 1NC | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & X \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | Knob Lever Key | ASD201NU-116 ASD2L01NU-116 ASD2K01NU-116 | ASD2101NU-116 ASD21L01NU-116 ASD21K01NU-116 | ASD2201NU-116 ASD22L01NU-116 ASD22K01NU-116 |
| $\begin{aligned} & \text { 1NO } \\ & \text { 1NC } \end{aligned}$ | 1 2 | $\begin{aligned} & 0 \\ & X \end{aligned}$ | $\begin{aligned} & X \\ & 0 \end{aligned}$ | Knob Lever Key | ASD211NU ASD2L11NU ASD2K11NU | ASD2111NU ASD21L11NU ASD21K11NU | ASD2211NU ASD22L11NU ASD22K11NU |
| 2NO | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & X \\ & X \end{aligned}$ | Knob Lever Key | ASD220NU ASD2L20NU ASD2K20NU | ASD2120NU ASD21L20NU ASD21K20NU | ASD2220NU ASD22L20NU ASD22K20NU |
| 2NC | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{aligned} & X \\ & X \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \end{aligned}$ | Knob Lever Key | ASD202NU-104 ASD2L02NU-104 ASD2K02NU-104 | ASD2102NU-104 ASD21L02NU-104 ASD21K02NU-104 | ASD2202NU-104 ASD22L02NU-104 ASD22K02NU-104 |
| 2NO 2NC | 1 2 3 4 | $\begin{aligned} & 0 \\ & X \\ & 0 \\ & X \end{aligned}$ | $\begin{aligned} & X \\ & 0 \\ & X \\ & 0 \end{aligned}$ | Knob Lever Key | $\begin{aligned} & \text { ASD222NU } \\ & \text { ASD2L22NU } \\ & \text { ASD2K22NU } \end{aligned}$ | ASD2122NU <br> ASD21L22NU <br> ASD21K22NU | ASD2222NU <br> ASD22L22NU <br> ASD22K22NU |
| $\begin{aligned} & \text { 2NO } \\ & \text { 2NC } \end{aligned}$ | 1 2 3 4 | $\begin{aligned} & 0 \\ & 0 \\ & X \\ & X \end{aligned}$ | $\begin{aligned} & X \\ & X \\ & 0 \\ & 0 \end{aligned}$ | Knob <br> Lever Key | ASD222NU-111 ASD2L22NU-111 ASD2K22NU-111 | ASD2122NU-111 <br> ASD21L22NU-111 <br> ASD21K22NU-111 | $\begin{aligned} & \text { ASD2222NU-111 } \\ & \text { ASD22L22NU-111 } \\ & \text { ASD22K22NU-111 } \end{aligned}$ |

1. The truth table indicates the operating position of contact block when the operator is switched to that position.
$\mathrm{X}=\mathrm{On}$ (closed contacts) $0=0 \mathrm{ff}$ (open contacts) $X-X=$ Overlapping Contacts: Remain on (closed contacts) when switch is moved between these two positions.
2. All knob and lever selector switches come in black. Other colors are available by ordering the knob or lever separately.
3. Custom contact arrangements available, see page 820 .

Non-Illuminated 3-Position Selector Switches

## Switching Power Supplies PS5R-V Series



## STANDARDS COMPLIANCE

| Applicable Standards | Mark | File No. or Organization |
| :---: | :---: | :---: |
| UL508 <br> UL1310 ${ }^{1}$ <br> ANSI/ISA 12.12.01 <br> CSA C22.2 No.107.1 <br> CSA C22.2 No. 213 <br> CSA C22.2 No. $223^{1}$ | c)us | UL/c-UL Listed <br> File No. E467154, E177168 |
| EN60950-1 <br> EN50178 <br> EN61204-3 <br> EN50581 | $C E$ | TÜV SÜD ${ }^{2}$ <br> EU Low Voltage Directive, <br> EMC Directive <br> RoHS Directive |
| SEMI F47 | - | EPRI |

Note 1: PS5R-VA/VB/VC/VD/VE only
Note 2: EN60950-1, EN50178 only

## PART NUMBERS

| Output Capacity | Part Number | Input Voltage | Output Voltage | Output Current |
| :---: | :---: | :---: | :---: | :---: |
| 7.5W | PS5R-VA05 | $\begin{aligned} & 100 \text { to } 240 \mathrm{~V} \mathrm{AC} \\ & \text { (Voltage range: } 85 \text { to } 264 \mathrm{~V} \\ & \text { AC / } \\ & 100 \text { to } 370 \mathrm{~V} \text { DC) } \end{aligned}$ | 5 V | 1.5A |
|  | PS5R-VA12 |  | 12 V | 0.6A |
|  | PS5R-VA24 |  | 24 V | 0.3A |
| 10W | PS5R-VB05 |  | 5 V | 2.0A |
| 15W | PS5R-VB12 |  | 12 V | 1.3A |
|  | PS5R-VB24 |  | 24 V | 0.65A |
| 30W | PS5R-VC12 |  | 12 V | 2.5A |
|  | PS5R-VC24 |  | 24 V | 1.3 A |
| 60W | PS5R-VD24 |  | 24 V | 2.5 A |
| 90W | PS5R-VE24 |  | 24 V | 3.75 A |
| 120W | PS5R-VF24 |  | 24 V | 5.0A |
| 240W | PS5R-VG24 |  | 24 V | 10.0A |

Part Number Structure

| PS5R - V $\square \square$ |  |
| :---: | :---: |
| Output Capacity $\longrightarrow$ Output Voltage |  |
| A: 7.5 W 05: $5 \mathrm{~V}^{3}$ |  |
| B: $10 \mathrm{~W} / 15 \mathrm{~W}$ - 12: $12 \mathrm{~V}{ }^{4}$ |  |
| C: 30 W 24: 24 V |  |
| D: 60W |  |
| E: 90W |  |
| F: 120W Note 3: PS5R-VA/VB only |  |
| G: 240 W | Note 4: PS5R-VA/VB/VC only |
|  | Use only for interpreting part numbers. |
|  | Do not use for developing part numbers. |

## SPECIFICATIONS


*At normal temperature and humidity unless otherwise specified.
Note 1: DC input voltage is not subject to safety standards. When using on DC input, connect a fuse to the input terminal for DC input protection.
Note 2: Under stable state
Note 3: $\operatorname{PS5R}-\mathrm{VB} 05$ ( 5 V DC/2.0A) is 10 W (Up to 3.0 A at $\mathrm{Ta}=0$ to $40^{\circ} \mathrm{C}$. Not subject to safety standards above 2.0A.)
Note 4: See the output derating curves.
Note 5: Calculation of the expected life is based on the actual life of the aluminum electrolytic capacitor. The expected life depends on operating conditions.

## AC axial compact fan

sickle-shaped blades (S series)

## ebm-papst Mulfingen GmbH \& Co. KG

Bachmühle 2 - D-74673 Mulfingen
Phone +49 7938 81-0
Fax +49 7938 81-110
info1@de.ebmpapst.com
www.ebmpapst.com
Limited partnership • Headquarters Mulfingen
Amtsgericht (court of registration) Stuttgart • HRA 590344
General partner Elektrobau Mulfingen GmbH • Headquarters Mulfingen
Amtsgericht (court of registration) Stuttgart • HRB 590142

## Nominal data

| Type | W2E200-HH86-01 |
| :--- | :--- |
| Motor | M2E068-BF |


| Phase |  | 1~ | 1~ |
| :--- | :--- | :--- | :--- |
| Nominal voltage | VAC | 115 | 115 |
| Frequency | Hz | 50 | 60 |
| Method of obtaining data |  | fa | fa |
| Valid for approval/standard |  | CE | CE |
| Speed | $\mathrm{min}^{-1}$ | 2550 | 2800 |
| Power consumption | W | 64 | 80 |
| Current draw | A | 0.58 | 0.70 |
| Capacitor | 䒑F | 5 | 5 |
| Capacitor voltage | VDB | 220 | 220 |
| Capacitor standard |  | PO (CE) | PO (CE) |
| Max. back pressure | Pa | 100 | 120 |
| Min. ambient temperature | ${ }^{\circ} \mathrm{C}$ | -25 | -25 |
| Max. ambient temperature | ${ }^{\circ} \mathrm{C}$ | 60 | 65 |
| Starting current | A | 0.98 | 0.98 |

$\mathrm{ml}=\mathrm{Max}$. load $\cdot \mathrm{me}=$ Max. efficiency $\cdot \mathrm{fa}=$ Free air $\cdot \mathrm{cs}=$ Customer specification $\cdot \mathrm{ce}=$ Customer equipment
Subject to change

## AC axial compact fan

sickle-shaped blades (S series)

## Technical description

| Weight | 2.1 kg |
| :---: | :---: |
| Fan size | 200 mm |
| Rotor surface | Painted black |
| Blade material | Sheet steel, painted black |
| Fan housing material | Die-cast aluminum |
| Number of blades | 9 |
| Airflow direction | "V" |
| Direction of rotation | Counterclockwise, viewed toward rotor |
| Degree of protection | IP44; installation- and position-dependent |
| Insulation class | "B" |
| Moisture (F) / Environmental (H) protection class | F0 |
| Max. permitted ambient temp. for motor (transport/storage) | $+80^{\circ} \mathrm{C}$ |
| Min. permitted ambient temp. for motor (transport/storage) | $-40^{\circ} \mathrm{C}$ |
| Installation position | Any |
| Condensation drainage holes | None |
| Mode | S1 |
| Motor storage | Ball bearing |
| Touch current according to IEC 60990 (measuring circuit Fig. 4, TN system) | < 0.75 mA |
| Electrical hookup | Via terminals, capacitor connected |
| Motor protection | Thermal overload protector (TOP) internally connected |
| With cable | Variable |
| Protection class | I (with customer connection of protective earth) |
| Motor capacitor according to EN 60252-1 in safety protection class | PO/SO |
| Conformity with standards | CE |
| Approval | CSA C22.2 No. 113; VDE; EAC; CCC; UL 507 |

## AC axial compact fan

sickle-shaped blades (S series)

Product drawing


1
Direction of air flow "V"

## Terminal/plug assignment



```
L|blue 
```


## AC axial compact fan

sickle-shaped blades (S series)

## Curves: Air performance 60 Hz



Measurement: LU-57315
Air performance measured according to ISO 5801 installation category A. For detailed information on the measurement setup, contact ebm-papst. Intake sound level:' Sound power level according to ISO 13347 sound pressure level measured at 1 m
distance from fan axis. The values given are valid under the specified measuring
conditions and may vary due to conditions of installation. For deviations from the standard checked on the installed unit.

## Measured values

|  | U | $\mathbf{f}$ | $\mathbf{n}$ | $\mathbf{P}_{\mathbf{e}}$ | $\mathbf{I}$ | $\mathbf{q v}$ | $\mathbf{p}_{\text {fs }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | V | Hz | $\mathrm{min}^{-1}$ | W | A | $\mathrm{m}^{3} / \mathrm{h}$ | Pa |
| $\mathbf{1}$ | 115 | 60 | 2800 | 80 | 0.70 | 1020 | 0 |
| 2 | 115 | 60 | 2715 | 81 | 0.70 | 920 | 30 |
| 3 | 115 | 60 | 2620 | 85 | 0.73 | 790 | 60 |
| 4 | 115 | 60 | 2500 | 87 | 0.76 | 555 | 90 |

[^9]
## Guard grilles



- Steel wire, plastic-coated, silver-metallic gloss.



## General

Flanders has led the world in filter media development and the application of high efficiency filtration for over 60 -years. Originally introduced in 2004, the industry's first MERV 8 filter operating solely on mechanical means has now been improved! Since 2004, other manufacturers have altered media blends to meet the LEED ${ }^{\circledR}$ and market driven demand for non-electret MERV 8 filters. This has led to pressure drop increases in their filters of $25 \%$ or more!

Utilizing a unique new fiber technology, our Research \& Development Team has now achieved multiple goals of maintaining MERV 8A performance at a resistance that is $40 \%$ lower than competition. At the same time, the LPD's Dust Holding Capacity remains the highest in the industry. All this while operating on $100 \%$ mechanical principles

- Remarkable!

Air filters are designed for dust holding (filter life), pressure drop (energy use), and MERV (particle removal efficiency). Flanders Pre Pleat 40 LPD achieves the highest dust holding capacity and the lowest pressure drop in the industry, while maintaining a mechanical MERV 8A per ASHRAE Standard 52.2-2007, Appendix J. Classified UL Class 900.

## Installation Considerations

Distinctions can be made in air filter technology. Flanders is committed to continuously developing new and improved products to assist in an environmentally responsible, healthy, and prosperous environment.
The Pre Pleat 40 LPD high and standard capacity pleated panel filters are suitable as pre filters but are best suited for heavy duty commercial, industrial, pharmaceutical, as well as other industrial applications where high dust holding is required. The Pre Pleat 40 LPD can be installed in PF-1 Holding Frames, K-Trac Framing Modules, Surepleat Side Access Housings and Bag-In / Bag-Out Containment housings.

## Operating Temperature Limits

Maximum operating temperature is $180^{\circ} \mathrm{F}\left(82.22^{\circ}\right.$ C).

## Physical Data

Media: 100\% Non-woven synthetic media manufactured from recyclable material

Media Support: Diamond-shaped expanded metal
Pleat Design: V-Pleat
Pleat Count:
Economy Standard: 1 " $=13,2 "=10,4 "=9$
High Capacity: $1 "=15,2 "=15,4 "=13$
Frame: Moisture-resistant clay coated frame made with recyclable material

## Important Features

- Ecologically advanced filtration medium made from recyclable materials
- Media maximizing V-pleat design
- Expanded metal grid prevents media flutter while in operation
- Diagonal and horizontal support members provide frame strength
- Filter media pack is sealed to eliminate air bypass
- Average efficiency is 30-35\% per ASHRAE 52.1-92
- Average arrestance is $93 \%$
- MERV 8A per ASHRAE 52.2-2007, Appendix J


Capacities and Dimensions

| Capacities and Dimensions |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nominal Depth (in.) | Nominal Size WxHxD (in.) | Standard Capacity |  |  |  |  |  | High Capacity |  |  |  |  |  |
|  |  | 300 FPM |  | 500 FPM |  |  | Wt. Each (lbs.) | 300 fpm |  | 500 FPM |  | Media Area (sq. ft.) | Wt. <br> Each <br> (lbs.) |
|  |  | CFM | PD | CFM | PD |  |  | cfm | PD | CFM | PD |  |  |
| 1" <br> Std. Capacity 13 ppf | 10x10x1 | 208 | 0.17 | 347 | - | 1.1 | 0.2 | 208 | 0.15 | 347 | - | 1.3 | 0.2 |
|  | 10x20x1 | 417 | 0.17 | 694 | - | 2.3 | 0.3 | 417 | 0.15 | 694 | - | 2.7 | 0.3 |
|  | 12x20x1 | 500 | 0.17 | 833 | - | 2.7 | 0.3 | 500 | 0.15 | 833 | - | 3.1 | 0.3 |
|  | 12x24x1 | 600 | 0.17 | 1000 | - | 3.2 | 0.3 | 600 | 0.15 | 1000 | - | 3.7 | 0.4 |
|  | 14x20x1 | 583 | 0.17 | 972 | - | 3.3 | 0.3 | 583 | 0.15 | 972 | - | 3.7 | 0.4 |
|  | 14x25x1 | 729 | 0.17 | 1215 | - | 4.1 | 0.4 | 729 | 0.15 | 1215 | - | 4.6 | 0.5 |
|  | 15x20x1 | 625 | 0.17 | 1042 | - | 3.5 | 0.4 | 625 | 0.15 | 1042 | - | 3.9 | 0.4 |
|  | 16x20x1 | 667 | 0.17 | 1111 | - | 3.7 | 0.4 | 667 | 0.15 | 1111 | - | 4.1 | 0.4 |
| High Capacity 15 ppf | 16x25x1 | 833 | 0.17 | 1389 | - | 4.6 | 0.5 | 833 | 0.15 | 1389 | - | 5.2 | 0.5 |
|  | 18x24x1 | 900 | 0.17 | 1500 | - | 4.9 | 0.5 | 900 | 0.15 | 1500 | - | 5.7 | 0.6 |
|  | 18x25x1 | 938 | 0.17 | 1563 | - | 5.2 | 0.5 | 938 | 0.15 | 1563 | - | 5.9 | 0.6 |
|  | 20x20x1 | 833 | 0.17 | 1389 | - | 4.5 | 0.5 | 833 | 0.15 | 1389 | - | 5.1 | 0.5 |
|  | 20x24x1 | 1000 | 0.17 | 1667 | - | 5.4 | 0.5 | 1000 | 0.15 | 1667 | - | 6.2 | 0.6 |
|  | 20x25x1 | 1042 | 0.17 | 1736 | - | 5.7 | 0.6 | 1042 | 0.15 | 1736 | - | 6.4 | 0.6 |
|  | 24x24x1 | 1200 | 0.17 | 2000 | - | 6.4 | 0.6 | 1200 | 0.15 | 2000 | - | 7.4 | 0.7 |
|  | 25x25x1 | 1302 | 0.17 | 2170 | - | 7.2 | 0.7 | 1302 | 0.15 | 2170 | - | 8.3 | 0.8 |
| $2 "$Std. <br> Capacity <br> 10 ppf | 10x20x2 | 417 | 0.11 | 694 | 0.21 | 4.3 | 0.4 | 417 | 0.10 | 694 | 0.20 | 6.2 | 0.5 |
|  | 12x20x2 | 500 | 0.11 | 833 | 0.21 | 4.8 | 0.5 | 500 | 0.10 | 833 | 0.20 | 7.2 | 0.5 |
|  | 12x24x2 | 600 | 0.11 | 1000 | 0.21 | 5.8 | 0.6 | 600 | 0.10 | 1000 | 0.20 | 8.7 | 0.6 |
|  | 14x20x2 | 583 | 0.11 | 972 | 0.21 | 5.8 | 0.5 | 583 | 0.10 | 972 | 0.20 | 8.6 | 0.6 |
|  | 14x25x2 | 729 | 0.11 | 1215 | 0.21 | 7.2 | 0.7 | 729 | 0.10 | 1215 | 0.20 | 10.8 | 0.8 |
|  | 15x20x2 | 625 | 0.11 | 1042 | 0.21 | 6.2 | 0.6 | 625 | 0.10 | 1042 | 0.20 | 9.1 | 0.7 |
|  | 16x20x2 | 667 | 0.11 | 1111 | 0.21 | 6.7 | 0.6 | 667 | 0.10 | 1111 | 0.20 | 9.6 | 0.7 |
|  | 16x25x2 | 833 | 0.11 | 1389 | 0.21 | 8.4 | 0.7 | 833 | 0.10 | 1389 | 0.20 | 12.0 | 0.9 |
| High Capacity 15 ppf | 18x24x2 | 900 | 0.11 | 1500 | 0.21 | 8.7 | 0.8 | 900 | 0.10 | 1500 | 0.20 | 13.3 | 0.9 |
|  | 18x25x2 | 938 | 0.11 | 1563 | 0.21 | 9.0 | 0.8 | 938 | 0.10 | 1563 | 0.20 | 13.8 | 1.0 |
|  | 20x20x2 | 833 | 0.11 | 1389 | 0.21 | 8.2 | 0.7 | 833 | 0.10 | 1389 | 0.20 | 12.0 | 0.9 |
|  | 20x24x2 | 1200 | 0.11 | 2000 | 0.21 | 9.8 | 0.9 | 1200 | 0.10 | 2000 | 0.20 | 14.4 | 1.0 |
|  | 20x25x2 | 1042 | 0.11 | 1736 | 0.21 | 10.2 | 0.9 | 1042 | 0.10 | 1736 | 0.20 | 15.0 | 1.1 |
|  | 24x24x2 | 1200 | 0.11 | 2000 | 0.21 | 11.5 | 1.0 | 1200 | 0.10 | 2000 | 0.20 | 17.3 | 1.2 |
|  | 25x25x2 | 1302 | 0.11 | 2170 | 0.21 | 12.6 | 1.1 | 1302 | 0.10 | 2170 | 0.20 | 19.3 | 1.3 |
| 4" <br> Std. <br> Capacity 9 ppf | 12x24x4 | 600 | 0.10 | 1000 | 0.19 | 11.1 | 1.0 | 600 | 0.09 | 1000 | 0.17 | 16.5 | 1.0 |
|  | 16x20x4 | 667 | 0.10 | 1111 | 0.19 | 12.3 | 1.0 | 667 | 0.09 | 1111 | 0.17 | 18.0 | 1.2 |
|  | 16x25x4 | 833 | 0.10 | 1389 | 0.19 | 15.5 | 1.3 | 833 | 0.09 | 1389 | 0.17 | 22.6 | 1.4 |
|  | 18x24x4 | 900 | 0.10 | 1500 | 0.19 | 17.3 | 1.4 | 900 | 0.09 | 1500 | 0.17 | 24.2 | 1.5 |
|  | 20x20x4 | 833 | 0.10 | 1389 | 0.19 | 15.4 | 1.3 | 833 | 0.09 | 1389 | 0.17 | 22.3 | 1.4 |
| High Capacity 13 ppf | 20x24x4 | 1000 | 0.10 | 1667 | 0.19 | 18.6 | 1.5 | 1000 | 0.09 | 1667 | 0.17 | 24.0 | 1.7 |
|  | 20x25x4 | 1042 | 0.10 | 1736 | 0.19 | 19.3 | 1.6 | 1042 | 0.09 | 1736 | 0.17 | 27.7 | 1.8 |
|  | 24x24x4 | 1200 | 0.10 | 2000 | 0.19 | 22.3 | 1.8 | 1200 | 0.09 | 2000 | 0.17 | 28.8 | 2.0 |
|  | 25x29x4 | 1510 | 0.10 | 2517 | 0.19 | 28.4 | 2.4 | 1510 | 0.09 | 2517 | 0.17 | 28.4 | 2.7 |

## Notes:

1. PD represents clean pressure drop in inches w.g. The recommended final pressure drop for all models is 1.0 in . w.g. System design may dictate a lower change-out point.
2. Actual filter face size for $12 \times 24$ and $24 \times 24$ filters is $5 / 8 \mathrm{in}$. under on height and width. Actual face size on all other sizes is $1 / 2 \mathrm{in}$. under on height and width.
3. Actual filter depth is $1 / 4$ inch under for these nominal 1 -inch, 2 -inch and 4 -inch deep filters. For capacities other than those shown, ratio the face velocities.
4. Efficiency is not affected by the conditioning steps outlined in ASHRAE 52.2-2007 per Appendix J.

## DIN rail perforated - NS 35/ 7,5 PERF 2000MM - 0801733

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)


DIN rail perforated, Standard profile, width: 35 mm , height: 7.5 mm , acc. to EN 60715, material: Steel, galvanized, passivated with a thick layer, length: 2000 mm , color: silver

## RoHS

## Key Commercial Data

| Packing unit | 1 M |
| :---: | :---: |
| Minimum order quantity | 5 M |
| GTIN |  |
| GTIN | 4017918006686 |
| Weight per Piece (excluding packing) | 1.000 g |
| Custom tariff number | 72166190 |
| Country of origin | Germany |

## Technical data

Dimensions

| Height | 7.5 mm |
| :--- | :--- |
| Length | 2000 mm |
| Width | 35 mm |
| Hole width | 15.00 mm |
| Hole height | 6.20 mm |
| Drill hole spacing | 25.00 mm |

## Standards and Regulations

| Test standard | acc. to EN 60715 |
| :--- | :--- |
| Connection in acc. with standard | IEC / EN |

## DIN rail perforated - NS 35/ 7,5 PERF 2000MM - 0801733

Drawings

Dimensional drawing


## Classifications

eCl@ss

| eCl@ss 10.0.1 | 27400602 |
| :--- | :--- |
| eCl@ss 11.0 | 27400602 |
| eCl@ss 4.0 | 27110800 |
| eCl@ss 4.1 | 27110800 |
| eCl@ss 5.0 | 27141100 |
| eCl@ss 5.1 | 27141100 |
| eCl@ss 6.0 | 27400600 |
| eCl@ss 7.0 | 27400602 |
| eCl@ss 8.0 | 27400602 |
| eCl@ss 9.0 | 27400602 |

ETIM

| ETIM 2.0 | EC001285 |
| :--- | :--- |
| ETIM 3.0 | EC001285 |
| ETIM 4.0 | EC000212 |
| ETIM 5.0 | EC000212 |
| ETIM 6.0 | EC001285 |
| ETIM 7.0 | EC001285 |

UNSPSC

## Feed-through terminal block - UT 4-3044102

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)


Feed-through terminal block, nom. voltage: 1000 V, nominal current: 32 A , connection method: Screw connection, number of connections: 2 , cross section: $0.14 \mathrm{~mm}^{2}-6 \mathrm{~mm}^{2}$, AWG: $26-10$, width: 6.2 mm , height: 46.9 mm, color: gray, mounting type: NS 35/7,5, NS 35/15

## Your advantages

$\square$ The large wiring space enables the connection of solid and stranded conductors without ferrules, even above the nominal cross section
$\square$ As well as saving space, the compact design enables user-friendly wiring in a small amount of space
$\square$ Optimum screwdriver guidance through closed screw shafts
$\square$ The cable entry funnel enables the use of conductors with ferrules and plastic collars within the nominal cross section
$\square$ Tested for railway applications

## RoHS

《x
Key Commercial Data

| Packing unit | 50 pc |
| :---: | :---: |
| GTIN |  |
| GTIN | 4017918960391 |

## Technical data

General

| Number of levels | 1 |
| :--- | :--- |
| Number of connections | 2 |
| Potentials | 1 |
| Nominal cross section | $4 \mathrm{~mm}^{2}$ |
| Color | gray |
| Insulating material | PA |
| Flammability rating according to UL 94 | V0 |
| Area of application | Railway industry |
|  | Machine building |
|  | Plant engineering |
|  | Process industry |

## Feed-through terminal block - UT 4-3044102

## Technical data

General

| Rated surge voltage | 8 kV |
| :---: | :---: |
| Degree of pollution | 3 |
| Overvoltage category | III |
| Insulating material group | I |
| Maximum power dissipation for nominal condition | 1.02 W |
| Maximum load current | 41 A (with $6 \mathrm{~mm}^{2}$ conductor cross section) |
| Nominal current $\mathrm{I}_{\mathrm{N}}$ | 32 A (with $4 \mathrm{~mm}^{2}$ conductor cross section) |
| Nominal voltage $\mathrm{U}_{\mathrm{N}}$ | 1000 V |
| Open side panel | Yes |
| Ambient temperature (operation) | $-60^{\circ} \mathrm{C} . . .85{ }^{\circ} \mathrm{C}$ |
| Ambient temperature (storage/transport) | $-25{ }^{\circ} \mathrm{C} \ldots 55^{\circ} \mathrm{C}$ (For a short time, not exceeding $24 \mathrm{~h},-60$ to $+70{ }^{\circ} \mathrm{C}$ ) |
| Permissible humidity (storage/transport) | 30 \% ... 70 \% |
| Ambient temperature (assembly) | $-5^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$ |
| Ambient temperature (actuation) | $-5^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$ |
| Shock protection test specification | DIN EN 50274 (VDE 0660-514):2002-11 |
| Back of the hand protection | guaranteed |
| Finger protection | guaranteed |
| Result of surge voltage test | Test passed |
| Result of power-frequency withstand voltage test | Test passed |
| Power frequency withstand voltage setpoint | 2.2 kV |
| Result of the test for mechanical stability of terminal points (5 x conductor connection) | Test passed |
| Result of bending test | Test passed |
| Bending test rotation speed | 10 rpm |
| Bending test turns | 135 |
| Bending test conductor cross section/weight | $0.14 \mathrm{~mm}^{2} / 0.2 \mathrm{~kg}$ |
|  | $4 \mathrm{~mm}^{2} / 0.9 \mathrm{~kg}$ |
|  | $6 \mathrm{~mm}^{2} / 1.4 \mathrm{~kg}$ |
| Tensile test result | Test passed |
| Result of tight fit on support | Test passed |
| Tight fit on carrier | NS 35 |
| Setpoint | 1 N |
| Result of voltage-drop test | Test passed |
| Result of temperature-rise test | Test passed |
| Requirement temperature-rise test | Increase in temperature $\leq 45 \mathrm{~K}$ |
| Short circuit stability result | Test passed |
| Conductor cross section short circuit testing | $4 \mathrm{~mm}^{2}$ |
| Short-time current | 0.48 kA |
| Conductor cross section short circuit testing | $6 \mathrm{~mm}^{2}$ |
| Short-time current | 0.72 kA |
| Result of thermal test | Test passed |

## Feed-through terminal block - UT 4-3044102

## Technical data

General

| Proof of thermal characteristics (needle flame) effective duration | 30 s |
| :---: | :---: |
| Oscillation, broadband noise test result | Test passed |
| Test specification, oscillation, broadband noise | DIN EN 50155 (VDE 0115-200):2008-03 |
| Test spectrum | Service life test category 1, class B, body mounted |
| Test frequency | $\mathrm{f}_{1}=5 \mathrm{~Hz}$ to $\mathrm{f}_{2}=150 \mathrm{~Hz}$ |
| ASD level | $1.857\left(\mathrm{~m} / \mathrm{s}^{2}\right)^{2} / \mathrm{Hz}$ |
| Acceleration | 0,8 g |
| Test duration per axis | 5 h |
| Test directions | X-, Y- and Z-axis |
| Shock test result | Test passed |
| Test specification, shock test | DIN EN 50155 (VDE 0115-200):2008-03 |
| Shock form | Half-sine |
| Acceleration | 5 g |
| Shock duration | 30 ms |
| Number of shocks per direction | 3 |
| Test directions | X-, Y- and Z-axis (pos. and neg.) |
| Relative insulation material temperature index (Elec., UL 746 B ) | $130{ }^{\circ} \mathrm{C}$ |
| Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) | $125{ }^{\circ} \mathrm{C}$ |
| Static insulating material application in cold | $-60^{\circ} \mathrm{C}$ |
| Surface flammability NFPA 130 (ASTM E 162) | passed |
| Specific optical density of smoke NFPA 130 (ASTM E 662) | passed |
| Calorimetric heat release NFPA 130 (ASTM E 1354) | 27,5 MJ/kg |
| Smoke gas toxicity NFPA 130 (SMP 800C) | passed |
| Fire protection for rail vehicles (DIN EN 45545-2) R22 | HL 1 - HL 3 |
| Fire protection for rail vehicles (DIN EN 45545-2) R23 | HL 1 - HL 3 |
| Fire protection for rail vehicles (DIN EN 45545-2) R24 | HL 1 - HL 3 |
| Fire protection for rail vehicles (DIN EN 45545-2) R26 | HL 1 - HL 3 |

Dimensions

| Width | 6.2 mm |
| :--- | :--- |
| End cover width | 2.2 mm |
| Length | 47.7 mm |
| Height | 46.9 mm |
| Height NS 35/7,5 | 47.5 mm |
| Height NS 35/15 | 55 mm |

## Connection data

| Connection method | Screw connection |
| :--- | :--- |
| Screw thread | M3 |
| Stripping length | 9 mm |
| Tightening torque, $\min$ | 0.6 Nm |

## Feed-through terminal block - UT 4-3044102

## Technical data

Connection data

| Tightening torque max | 0.8 Nm |
| :---: | :---: |
| Connection in acc. with standard | IEC 60947-7-1 |
| Note | Note: Product releases, connection cross sections and notes on connecting aluminum cables can be found in the download area. |
| Conductor cross section solid min. | $0.14 \mathrm{~mm}^{2}$ |
| Conductor cross section solid max. | $6 \mathrm{~mm}^{2}$ |
| Conductor cross section AWG min. | 26 |
| Conductor cross section AWG max. | 10 |
| Conductor cross section flexible min. | $0.14 \mathrm{~mm}^{2}$ |
| Conductor cross section flexible max. | $6 \mathrm{~mm}^{2}$ |
| Min. AWG conductor cross section, flexible | 26 |
| Max. AWG conductor cross section, flexible | 10 |
| Conductor cross section flexible, with ferrule without plastic sleeve min. | $0.14 \mathrm{~mm}^{2}$ |
| Conductor cross section flexible, with ferrule without plastic sleeve max. | $4 \mathrm{~mm}^{2}$ |
| Conductor cross section flexible, with ferrule with plastic sleeve min. | $0.14 \mathrm{~mm}^{2}$ |
| Conductor cross section flexible, with ferrule with plastic sleeve max. | $4 \mathrm{~mm}^{2}$ |
| 2 conductors with same cross section, solid min. | $0.14 \mathrm{~mm}^{2}$ |
| 2 conductors with same cross section, solid max. | $1.5 \mathrm{~mm}^{2}$ |
| 2 conductors with same cross section, stranded min. | $0.14 \mathrm{~mm}^{2}$ |
| 2 conductors with same cross section, stranded max. | $1.5 \mathrm{~mm}^{2}$ |
| Two conductors with the same cross section, flexible, with TWIN ferrules, with plastic sleeve, minimum | 0.5 mm ${ }^{2}$ |
| Two conductors with the same cross section, flexible, with TWIN ferrules, with plastic sleeve, maximum | 2.5 mm ${ }^{2}$ |
| Two conductors with the same cross section stranded, with ferrule and without plastic sleeve, minimum | $0.14 \mathrm{~mm}^{2}$ |
| Two conductors with the same cross section stranded, with ferrule and without plastic sleeve, maximum | 1.5 mm ${ }^{2}$ |
| Connection in acc. with standard | IEC/EN 60079-7 |
| Conductor cross section solid min. | $0.14 \mathrm{~mm}^{2}$ |
| Conductor cross section solid max. | $6 \mathrm{~mm}^{2}$ |
| Conductor cross section AWG min. | 26 |
| Conductor cross section AWG max. | 10 |
| Conductor cross section flexible min. | $0.14 \mathrm{~mm}^{2}$ |
| Conductor cross section flexible max. | $4 \mathrm{~mm}^{2}$ |
| Internal cylindrical gage | A4 |

Standards and Regulations

| Connection in acc. with standard | CSA |
| :--- | :--- |
|  | IEC 60947-7-1 |
|  | IEC/EN 60079-7 |
| Flammability rating according to UL 94 | V0 |

Feed-through terminal block - UT 4-3044102

## Technical data

Environmental Product Compliance

| REACh SVHC | Lead 7439-92-1 |
| :--- | :--- |
| China RoHS | Environmentally Friendly Use Period = 50 years |
|  | For details about hazardous substances go to tab "Downloads", <br> Category "Manufacturer's declaration" |

## Drawings

## Circuit diagram



Classifications
eCl@ss

| eCl@ss 10.0.1 | 27141120 |
| :--- | :--- |
| eCl@ss 4.0 | 27141100 |
| eCl@ss 4.1 | 27141100 |
| eCl@ss 5.0 | 27141100 |
| eCl@ss 5.1 | 27141100 |
| eCl@ss 6.0 | 27141100 |
| eCl@ss 7.0 | 27141120 |
| eCl@ss 8.0 | 27141120 |
| eCl@ss 9.0 | 27141120 |

ETIM

| ETIM 2.0 | EC000897 |
| :--- | :--- |
| ETIM 3.0 | EC000897 |
| ETIM 4.0 | EC000897 |
| ETIM 5.0 | EC000897 |
| ETIM 6.0 | EC000897 |
| ETIM 7.0 | EC000897 |

## UNSPSC

| UNSPSC 6.01 | 30211811 |
| :--- | :--- |
| UNSPSC 7.0901 | 39121410 |
| UNSPSC 11 | 39121410 |
| UNSPSC 12.01 | 39121410 |
| UNSPSC 13.2 | 39121410 |
| UNSPSC 18.0 | 39121410 |
| UNSPSC 19.0 | 39121410 |

Feed-through terminal block - UT 4-3044102

## Classifications

UNSPSC

| UNSPSC 20.0 | 39121410 |
| :--- | :--- |
| UNSPSC 21.0 | 39121410 |

## Approvals

Approvals

Approvals
DNV GL / CSA / PRS / UL Recognized / cUL Recognized / IECEE CB Scheme / VDE Gutachten mit Fertigungsüberwachung / EAC / RS / LR / cULus Recognized

## Ex Approvals

IECEx / ATEX / UL Recognized / cUL Recognized / EAC Ex / cULus Recognized

## Approval details

| DNV GL | https://approvalfinder.dnvgl.com/ | TAE00001S9 |
| :---: | :---: | :---: |


| CSA | http://www.csagroup.org/services-industries/product-listing/ |  | 13631 |
| :---: | :---: | :---: | :---: |
|  | B | C |  |
| Nominal voltage UN | 600 V | 600 V |  |
| Nominal current IN | 30 A | 30 A |  |
| $\mathrm{mm}^{2} / \mathrm{AWG} / \mathrm{kcmil}$ | 26-10 | 26-10 |  |
| PRS | http://www.prs.pl/ |  | TE/2156/880590/17 |


| UL Recognized | http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm |  | FILE E 60425 |
| :---: | :---: | :---: | :---: |
|  | B | C |  |
| Nominal voltage UN | 600 V | 600 V |  |
| Nominal current IN | 30 A | 30 A |  |
| $\mathrm{mm}^{2} / \mathrm{AWG} / \mathrm{kcmil}$ | 26-10 | 26-10 |  |

Feed-through terminal block - UT 4-3044102
Approvals

| cUL Recognized | http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm |  | FILE E 60425 |
| :---: | :---: | :---: | :---: |
|  | B | C |  |
| Nominal voltage UN | 600 V | 600 V |  |
| Nominal current IN | 30 A | 30 A |  |
| mm²/AWG/kcmil | 26-10 | 26-10 |  |



| VDE Gutachten mit <br> Fertigungsüberwachung | http://www2.vde.com/de/Institut/Online-Service/ <br> VDE-gepruefteProdukte/Seiten/Online-Suche.aspx |
| :--- | :--- |
|  |  |
| Nominal voltage UN | 80013658 |
| Nominal current IN | 800 V |
| $\mathrm{~mm}^{2} /$ AWG/kcmil | 32 A |

EAC


RU C-
DE.A*30.B. 01742

| RS | http://www.rs-head.spb.ru/en/index.php | 17.00013 .272 |
| :--- | :--- | :--- |
| LR |  |  |
| hegister |  |  |

cULus Recognized

## Accessories

Accessories

## End cover - D-UT 2,5/10-3047028

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)


End cover, length: 47 mm , width: 2.2 mm, height: 39.8 mm , color: gray

## RoHS

camerter

## Key Commercial Data

| Packing unit | 50 pc |
| :---: | :---: |
| Minimum order quantity | 50 pc |
| GTIN |  |
| GTIN | 4017918960346 |

## Technical data

General

| Color | gray |
| :--- | :--- |
| Material | PA |
| Flammability rating according to UL 94 | V0 |

## Dimensions

| Width | 2.2 mm |
| :--- | :--- |
| Length | 47 mm |
| Height | 39.8 mm |

General

| Ambient temperature (operation) | $-60^{\circ} \mathrm{C} \ldots 85^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Ambient temperature (storage/transport) | $-25^{\circ} \mathrm{C} \ldots 55^{\circ} \mathrm{C}$ (For a short time, not exceeding $24 \mathrm{~h},-60$ to $+70{ }^{\circ} \mathrm{C}$ ) |
| Permissible humidity (storage/transport) | $30 \% \ldots 70 \%$ |
| Ambient temperature (assembly) | $-5^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$ |
| Ambient temperature (actuation) | $-5^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$ |
| Relative insulation material temperature index (Elec., UL 746 B$)$ | $130^{\circ} \mathrm{C}$ |
| Temperature index of insulation material (DIN EN 60216-1 (VDE <br> $0304-21)) ~$ | $125^{\circ} \mathrm{C}$ |

## End cover - D-UT 2,5/10-3047028

## Technical data

General

| Static insulating material application in cold | $-60^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Surface flammability NFPA 130 (ASTM E 162) | passed |
| Specific optical density of smoke NFPA 130 (ASTM E 662) | passed |
| Calorimetric heat release NFPA 130 (ASTM E 1354) | $27,5 \mathrm{MJ} / \mathrm{kg}$ |
| Smoke gas toxicity NFPA 130 (SMP 800C) | passed |
| Fire protection for rail vehicles (DIN EN 45545-2) R22 | $\mathrm{HL} \mathrm{1-HL} \mathrm{3}$ |
| Fire protection for rail vehicles (DIN EN 45545-2) R23 | $\mathrm{HL} \mathrm{1-HL} \mathrm{3}$ |
| Fire protection for rail vehicles (DIN EN 45545-2) R24 | $\mathrm{HL} \mathrm{1-HL} \mathrm{3}$ |
| Fire protection for rail vehicles (DIN EN 45545-2) R26 | $\mathrm{HL} 1-\mathrm{HL} 3$ |

Standards and Regulations

| Flammability rating according to UL 94 | V0 |
| :--- | :--- |

Environmental Product Compliance

| China RoHS | Environmentally friendly use period: unlimited $=$ EFUP-e |
| :--- | :--- |
|  | No hazardous substances above threshold values |

## Classifications

eCl@ss

| eCl@ss 10.0.1 | 27141133 |
| :--- | :--- |
| eCl@ss 4.0 | 21011300 |
| eCl@ss 4.1 | 21011300 |
| eCl@ss 5.0 | 27141100 |
| eCl@ss 5.1 | 27141100 |
| eCl@ss 6.0 | 27141100 |
| eCl@ss 7.0 | 27141133 |
| eCl@ss 8.0 | 27141133 |
| eCl@ss 9.0 | 27141133 |

ETIM

| ETIM 2.0 | EC000886 |
| :--- | :--- |
| ETIM 3.0 | EC000886 |
| ETIM 4.0 | EC000886 |
| ETIM 5.0 | EC000886 |
| ETIM 6.0 | EC000886 |
| ETIM 7.0 | EC000886 |

UNSPSC

| UNSPSC 6.01 | 30211827 |
| :--- | :--- |
| UNSPSC 7.0901 | 39121424 |
| UNSPSC 11 | 39121424 |

## End cover - D-UT 2,5/10-3047028

Classifications
UNSPSC

| UNSPSC 12.01 | 39121424 |
| :--- | :--- |
| UNSPSC 13.2 | 39121425 |
| UNSPSC 18.0 | 39121425 |
| UNSPSC 19.0 | 39121425 |
| UNSPSC 20.0 | 39121425 |
| UNSPSC 21.0 | 39121425 |

Phoenix Contact 2020 © - all rights reserved http://www.phoenixcontact.com
PHOENIX CONTACT GmbH \& Co. KG
Flachsmarktstr. 8
32825 Blomberg
Germany
Tel. +49 5235300
Fax +49 5235341200
http://www.phoenixcontact.com

## End clamp - E/NS 35 N - 0800886

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)


## Product Features

■ Large-surface labeling

Key Commercial Data

| Packing unit | 1 pc |
| :---: | :---: |
| Minimum order quantity | 50 pc |
| GTIN |  |
| Weight per Piece (excluding packing) | 14.8 g |
| Custom tariff number | 85389099 |
| Country of origin | Germany |

## Technical data

Dimensions

| Height | 32.8 mm |
| :--- | :--- |
| Length | 48.6 mm |
| Width | 9.5 mm |

General

| Material | PA |
| :--- | :--- |
| Color | gray |
| Tightening torque, min | 0.4 Nm |
| Tightening torque max | 0.5 Nm |

Standards and Regulations

## End clamp - E/NS 35 N - 0800886

## Technical data

Standards and Regulations

| Flammability rating according to UL 94 | V2 |
| :--- | :--- |

## Classifications

eCl@ss

| eCl@ss 4.0 | 27141199 |
| :--- | :--- |
| eCl@ss 4.1 | 27141199 |
| eCl@ss 5.0 | 27141135 |
| eCl@ss 5.1 | 27141145 |
| eCl@ss 6.0 | 27141135 |
| eCl@ss 7.0 | 27141135 |
| eCl@ss 8.0 | 27141135 |

ETIM

| ETIM 2.0 | EC000761 |
| :--- | :--- |
| ETIM 3.0 | EC001041 |
| ETIM 4.0 | EC001041 |
| ETIM 5.0 | EC001041 |

UNSPSC

| UNSPSC 6.01 | 30212109 |
| :--- | :--- |
| UNSPSC 7.0901 | 39121708 |
| UNSPSC 11 | 39121708 |
| UNSPSC 12.01 | 39121708 |
| UNSPSC 13.2 | 39121708 |

Drawings

## End clamp - E/NS 35 N - 0800886



Phoenix Contact 2016 © - all rights reserved http://www.phoenixcontact.com

## Plug-in bridge - FBS 10-8-3030323

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)


Plug-in bridge, pitch: 8.2 mm , width: 80.3 mm , number of positions: 10, color: red

## Your advantages

$\boxed{\square}$ The 2- to 50-pos. jumpers can bridge up to 50 terminal blocks in the two bridge shafts of the CLIPLINE complete system in one step

## Key Commercial Data

| Packing unit | 1 pc |
| :---: | :---: |
| Minimum order quantity | 10 pc |
| GTIN |  |
| GTIN | 4017918188634 |
| Weight per Piece (excluding packing) | 19.460 g |
| Custom tariff number | 85366990 |
| Country of origin | Germany |

## Technical data

Technical data

| Color | red |
| :--- | :--- |
| Material | Copper |
| Number of positions | 10 |
| Pitch | 8.2 mm |
| Height | 29.6 mm |
| Width | 80.3 mm |
| Flammability rating according to UL 94 | V0 |

## Plug-in bridge - FBS 10-8-3030323

## Technical data

Technical data

| Maximum load current | 41 A (The current values for the jumpers can deviate when used in <br> different modular terminal blocks. The precise values can be found in the <br> accessories data for the respective modular terminal blocks.) |
| :--- | :--- |

Standards and Regulations

| Flammability rating according to UL 94 | V0 |
| :--- | :--- |

## Environmental Product Compliance

| China RoHS | Environmentally friendly use period: unlimited = EFUP-e |
| :--- | :--- |
|  | No hazardous substances above threshold values |

## Classifications

eCl@ss

| eCl@ss 4.0 | 27141199 |
| :--- | :--- |
| eCl@ss 4.1 | 27141199 |
| eCl@ss 5.0 | 27141140 |
| eCl@ss 5.1 | 27141100 |
| eCl@ss 6.0 | 27141100 |
| eCl@ss 7.0 | 27141140 |
| eCl@ss 8.0 | 27141140 |
| eCl@ss 9.0 | 27141140 |

ETIM

| ETIM 2.0 | EC000489 |
| :--- | :--- |
| ETIM 3.0 | EC000489 |
| ETIM 4.0 | EC000489 |
| ETIM 5.0 | EC000489 |
| ETIM 6.0 | EC000489 |

UNSPSC

| UNSPSC 6.01 | 30211829 |
| :--- | :--- |
| UNSPSC 7.0901 | 39121426 |
| UNSPSC 11 | 39121426 |
| UNSPSC 12.01 | 39121426 |
| UNSPSC 13.2 | 39121426 |

## Approvals

## Approvals

## Ground modular terminal block - UT 4-PE - 3044128

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid
(http://phoenixcontact.com/download)


Ground modular terminal block, connection method: Screw connection, number of connections: 2, cross section: $0.14 \mathrm{~mm}^{2}-6 \mathrm{~mm}^{2}$, AWG: $26-10$, width: 6.2 mm , height: 46.9 mm , color: green-yellow, mounting type: NS 35/7,5, NS 35/15

## Your advantages

$\square$ Tested for railway applications
$\square$
RoHS

$$
\langle\varepsilon\rangle
$$

## Key Commercial Data

| Packing unit | 50 pc |
| :---: | :---: |
| GTIN |  |
| GTIN | 4017918960407 |

Technical data

General

| Number of levels | 1 |
| :--- | :--- |
| Number of connections | 2 |
| Nominal cross section | $4 \mathrm{~mm}^{2}$ |
| Color | green-yellow |
| Insulating material | PA |
| Flammability rating according to UL 94 | V0 |
| Area of application | Railway industry |
|  | Machine building |
|  | Plant engineering |
|  | Process industry |
| Rated surge voltage | 8 kV |
| Degree of pollution | 3 |
| Overvoltage category | III |
| Insulating material group | I |
| Open side panel | Yes |

## Ground modular terminal block - UT 4-PE - 3044128

## Technical data

General

| Ambient temperature (operation) | $-60{ }^{\circ} \mathrm{C} . . .85{ }^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Ambient temperature (storage/transport) | $-25{ }^{\circ} \mathrm{C} \ldots 55^{\circ} \mathrm{C}$ (For a short time, not exceeding $24 \mathrm{~h},-60$ to $+70{ }^{\circ} \mathrm{C}$ ) |
| Permissible humidity (storage/transport) | 30 \% ... 70 \% |
| Ambient temperature (assembly) | $-5^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$ |
| Ambient temperature (actuation) | $-5^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$ |
| Oscillation, broadband noise test result | Test passed |
| Test specification, oscillation, broadband noise | DIN EN 50155 (VDE 0115-200):2008-03 |
| Test spectrum | Service life test category 1, class B, body mounted |
| Test frequency | $\mathrm{f}_{1}=5 \mathrm{~Hz}$ to $\mathrm{f}_{2}=150 \mathrm{~Hz}$ |
| ASD level | $1.857\left(\mathrm{~m} / \mathrm{s}^{2}\right)^{2} / \mathrm{Hz}$ |
| Acceleration | 0,8 g |
| Test duration per axis | 5 h |
| Test directions | X-, Y- and Z-axis |
| Shock test result | Test passed |
| Test specification, shock test | DIN EN 50155 (VDE 0115-200):2008-03 |
| Shock form | Half-sine |
| Acceleration | 5 g |
| Shock duration | 30 ms |
| Number of shocks per direction | 3 |
| Test directions | X-, Y- and Z -axis (pos. and neg.) |
| Relative insulation material temperature index (Elec., UL 746 B) | $130{ }^{\circ} \mathrm{C}$ |
| Temperature index of insulation material (DIN EN 60216-1 (VDE 0304-21)) | $125{ }^{\circ} \mathrm{C}$ |
| Static insulating material application in cold | $-60^{\circ} \mathrm{C}$ |
| Surface flammability NFPA 130 (ASTM E 162) | passed |
| Specific optical density of smoke NFPA 130 (ASTM E 662) | passed |
| Calorimetric heat release NFPA 130 (ASTM E 1354) | 27,5 MJ/kg |
| Smoke gas toxicity NFPA 130 (SMP 800C) | passed |
| Fire protection for rail vehicles (DIN EN 45545-2) R22 | HL 1 - HL 3 |
| Fire protection for rail vehicles (DIN EN 45545-2) R23 | HL 1 - HL 3 |
| Fire protection for rail vehicles (DIN EN 45545-2) R24 | HL 1 - HL 3 |
| Fire protection for rail vehicles (DIN EN 45545-2) R26 | HL 1 - HL 3 |

## Dimensions

| Width | 6.2 mm |
| :--- | :--- |
| End cover width | 2.2 mm |
| Length | 47.7 mm |
| Height | 46.9 mm |
| Height NS $35 / 7,5$ | 47.5 mm |
| Height NS $35 / 15$ | 55 mm |

## Connection data

## Ground modular terminal block - UT 4-PE - 3044128

## Technical data

Connection data

| Note | Please observe the current carrying capacity of the DIN rails. |
| :---: | :---: |
| Connection method | Screw connection |
| Screw thread | M3 |
| Stripping length | 9 mm |
| Tightening torque, min | 0.6 Nm |
| Tightening torque max | 0.8 Nm |
| Connection in acc. with standard | IEC 60947-7-2 |
| Note | Note: Product releases, connection cross sections and notes on connecting aluminum cables can be found in the download area. |
| Conductor cross section solid min. | $0.14 \mathrm{~mm}^{2}$ |
| Conductor cross section solid max. | $6 \mathrm{~mm}^{2}$ |
| Conductor cross section AWG min. | 26 |
| Conductor cross section AWG max. | 10 |
| Conductor cross section flexible min. | $0.14 \mathrm{~mm}^{2}$ |
| Conductor cross section flexible max. | $6 \mathrm{~mm}^{2}$ |
| Min. AWG conductor cross section, flexible | 26 |
| Max. AWG conductor cross section, flexible | 10 |
| Conductor cross section flexible, with ferrule without plastic sleeve min. | $0.25 \mathrm{~mm}^{2}$ |
| Conductor cross section flexible, with ferrule without plastic sleeve max. | $4 \mathrm{~mm}^{2}$ |
| Conductor cross section flexible, with ferrule with plastic sleeve min. | $0.25 \mathrm{~mm}^{2}$ |
| Conductor cross section flexible, with ferrule with plastic sleeve max. | $4 \mathrm{~mm}^{2}$ |
| 2 conductors with same cross section, solid min. | $0.14 \mathrm{~mm}^{2}$ |
| 2 conductors with same cross section, solid max. | $1.5 \mathrm{~mm}^{2}$ |
| 2 conductors with same cross section, stranded min. | $0.14 \mathrm{~mm}^{2}$ |
| 2 conductors with same cross section, stranded max. | $1.5 \mathrm{~mm}^{2}$ |
| Two conductors with the same cross section, flexible, with TWIN ferrules, with plastic sleeve, minimum | $0.5 \mathrm{~mm}^{2}$ |
| Two conductors with the same cross section, flexible, with TWIN ferrules, with plastic sleeve, maximum | 2.5 mm ${ }^{2}$ |
| Two conductors with the same cross section stranded, with ferrule and without plastic sleeve, minimum | $0.14 \mathrm{~mm}^{2}$ |
| Two conductors with the same cross section stranded, with ferrule and without plastic sleeve, maximum | 1.5 mm ${ }^{2}$ |
| Connection in acc. with standard | IEC/EN 60079-7 |
| Conductor cross section solid min. | $0.14 \mathrm{~mm}^{2}$ |
| Conductor cross section solid max. | $6 \mathrm{~mm}^{2}$ |
| Conductor cross section AWG min. | 26 |
| Conductor cross section AWG max. | 10 |
| Conductor cross section flexible min. | $0.14 \mathrm{~mm}^{2}$ |
| Conductor cross section flexible max. | $4 \mathrm{~mm}^{2}$ |
| Internal cylindrical gage | A4 |

## Standards and Regulations

## Ground modular terminal block - UT 4-PE - 3044128

## Technical data

Standards and Regulations

| Connection in acc. with standard | CSA |
| :--- | :--- |
|  | IEC 60947-7-2 |
|  | IEC/EN 60079-7 |
| Flammability rating according to UL 94 | V0 |

Environmental Product Compliance

| REACh SVHC | Lead 7439-92-1 |
| :--- | :--- |
| China RoHS | Environmentally Friendly Use Period $=50$ years |
|  | For details about hazardous substances go to tab "Downloads", <br> Category "Manufacturer's declaration" |

## Drawings

## Circuit diagram



Classifications
eCl@ss

| eCl@ss 10.0 .1 | 27141141 |
| :--- | :--- |
| eCl@ss 4.0 | 27141100 |
| eCl@ss 4.1 | 27141100 |
| eCl@ss 5.0 | 27141100 |
| eCl@ss 5.1 | 27141100 |
| eCl@ss 6.0 | 27141100 |
| eCl@ss 7.0 | 27141141 |
| eCl@ss 8.0 | 27141141 |
| eCl@ss 9.0 | 27141141 |

ETIM

| ETIM 2.0 | EC000901 |
| :--- | :--- |
| ETIM 3.0 | EC000901 |

Ground modular terminal block - UT 4-PE - 3044128
Classifications
ETIM

| ETIM 4.0 | EC000901 |
| :--- | :--- |
| ETIM 5.0 | EC000901 |
| ETIM 6.0 | EC000901 |
| ETIM 7.0 | EC000901 |

UNSPSC

| UNSPSC 6.01 | 30211811 |
| :--- | :--- |
| UNSPSC 7.0901 | 39121410 |
| UNSPSC 11 | 39121410 |
| UNSPSC 12.01 | 39121410 |
| UNSPSC 13.2 | 39121410 |
| UNSPSC 18.0 | 39121410 |
| UNSPSC 19.0 | 39121410 |
| UNSPSC 20.0 | 39121410 |
| UNSPSC 21.0 | 39121410 |

## Approvals

Approvals

## Approvals

DNV GL / CSA / PRS / UL Recognized / cUL Recognized / IECEE CB Scheme / VDE Gutachten mit Fertigungsüberwachung / EAC / RS / LR / cULus Recognized

Ex Approvals
IECEx / ATEX / EAC Ex

Approval details

DNV GL

| CSA | http://www.csagroup.org/services-industries/product-listing/ |  |
| :--- | :--- | :--- | :--- |
|  | B | C |
| $\mathrm{mm}^{2} / \mathrm{AWG} / \mathrm{kcmil}$ | $26-10$ | $26-10$ |

Ground modular terminal block - UT 4-PE - 3044128
Approvals

| PRS | http://www.prs.pl/ | TE/2156/880590/17 |
| :---: | :---: | :---: |


| UL Recognized |  | http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm |  | FILE E 60425 |
| :---: | :---: | :---: | :---: | :---: |
|  | B | C | D |  |
| mm²/AWG/kcmil | 26-10 | 26-10 | 26-10 |  |


| cUL Recognized |  | http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/index.htm |  | FILE E 60425 |
| :---: | :---: | :---: | :---: | :---: |
|  | B | C | D |  |
| mm²/AWG/kcmil | 26-10 | 26-10 | 26-10 |  |

IECEE CB Scheme
http://www.iecee.org/
DE1-63045

| VDE Gutachten mit <br> Fertigungsüberwachung | http://www2.vde.com/de/Institut/Online-Service/ <br> VDE-gepruefteProdukte/Seiten/Online-Suche.aspx | 40013715 |
| :--- | :--- | :--- |


| EAC | FTL |
| :---: | :---: | | RU C- |
| ---: |
| DE.A*30.B. 01742 |


| RS | http://www.rs-head.spb.ru/en/index.php | 17.00013 .272 |
| :---: | :---: | :---: |


| LR | Jloyd's Register | http://www.lr.org/en | LR2003762TA |
| :---: | :---: | :---: | :---: |

cULus Recognized

## Industrial Ethernet Switch - FL SWITCH SFN 5TX - 2891152

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)


Ethernet switch, 5 TP RJ45 ports, automatic detection of data transmission speed of 10 or 100 Mbps (RJ45), autocrossing function

One port is located on the bottom

## Your advantages

$\checkmark$ Local diagnostic indicators with LEDs
$\square$ The switch also offers cable locking and port blocking
$\checkmark$ RJ45 ports support a transmission speed of $10 / 100 \mathrm{Mbps}$; fiber optic ports support 100 Mbps
$\checkmark$ QoS-prioritized (Quality of Service) messages

## RoHS

## Key Commercial Data

| Packing unit | 1 pc |
| :---: | :---: |
| GTIN |  |
| GTIN | 4046356100793 |
| Weight per Piece (excluding packing) | 420.000 g |
| Custom tariff number | 85176200 |
| Country of origin | Taiwan |

## Technical data

Dimensions

| Width | 30 mm |
| :--- | :--- |
| Height | 120 mm |
| Depth | 70 mm |

## Ambient conditions

## Industrial Ethernet Switch - FL SWITCH SFN 5TX - 2891152

## Technical data

## Ambient conditions

| Degree of protection | IP20 |
| :--- | :--- |
| Ambient temperature (operation) | $0^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$ |
| Ambient temperature (storage/transport) | $-20^{\circ} \mathrm{C} \ldots 70^{\circ} \mathrm{C}$ |
| Permissible humidity (operation) | $5 \% \ldots 95 \%$ (non-condensing) |
| Permissible humidity (storage/transport) | $5 \% \ldots 95 \%$ (non-condensing) |
| Air pressure (operation) | $86 \mathrm{kPa} \ldots 5 \mathrm{kPa}$ (up to 1500 m above sea level) |
| Air pressure (storage/transport) | $66 \mathrm{kPa} \ldots 108 \mathrm{kPa}$ (up to 3500 m above sea level) |

## Interfaces

| Interface | Ethernet (RJ45) |
| :--- | :--- |
| No. of ports | 5 (RJ45 ports) |
| Note on the connection method | Auto negotiation and autocrossing |
| Transmission physics | Ethernet in RJ45 twisted pair |
| Transmission speed | $10 / 100$ Mbps |

## Function

| Basic functions | Unmanaged switch / auto negotiation, complies with IEEE 802.3, store and <br> forward switching mode |
| :--- | :--- |
| Additional functions | Autonegotiation |
| Status and diagnostic indicators | LEDs: $\mathrm{U}_{\mathrm{S}}$, link and activity per port |

Network expansion parameters

| Cascading depth | Network, linear, and star structure: any |
| :--- | :--- |
| Maximum conductor length (twisted pair) | 100 m |

## Supply voltage

| Supply voltage | 24 V DC |
| :--- | :--- |
| Residual ripple | $3.6 \mathrm{~V}_{\mathrm{PP}}$ (within the permitted voltage range) |
| Supply voltage range | $9 \mathrm{~V} \mathrm{DC} \mathrm{..}$.32 V DC |
| Typical current consumption | 90 mA (at $\mathrm{U}_{\mathrm{S}}=24 \mathrm{~V} \mathrm{DC}$ ) |
| Max. current consumption | 205 mA (at 9 V DC) |

General

| Mounting type | DIN rail |
| :--- | :--- |
| Type AX | Block design |
| Net weight | 415 g |
| Housing material | Aluminum |
| MTTF | 192.9 Years (MIL-HDBK-217F standard, temperature $25^{\circ} \mathrm{C}$, operating <br> cycle 100\%) |

## Standards and Regulations

## Industrial Ethernet Switch - FL SWITCH SFN 5TX - 2891152

## Technical data

Standards and Regulations

| Electromagnetic compatibility | Conformance with EMC Directive 2004/108/EC |
| :--- | :--- |
| Noise emission | EN 61000-6-4 |
| Noise immunity | EN 61000-6-2:2005 |
| Vibration (storage/transport) | $5 \mathrm{~g}, 150 \mathrm{~Hz}$, in acc. with IEC 60068-2-6 |
| Free from substances that could impair the application of coating | In acc. with VW specification |
| Vibration (operation) | in acc. with IEC 60068-2-6: $5 \mathrm{~g}, 150 \mathrm{~Hz}$ |
| Conformance | CE-compliant |
| UL, USA / Canada | Class I, Div. 2, Groups A, B, C, D, T4 |

## Environmental Product Compliance

| REACh SVHC | Lead 7439-92-1 |
| :--- | :--- |
| China RoHS | Environmentally Friendly Use Period = 10; |
|  | For details about hazardous substances go to tab "Downloads", Category <br> "Manufacturer's declaration" |

Phoenix Contact 2021 © - all rights reserved
http://www.phoenixcontact.com

## TYPES KA-U, KKA-U

## UNIVERSAL TERMINAL

(One Conductor)
For Aluminum and
Copper Conductors

These dual-rated one-conductor lugs are constructed from high strength aluminum alloy and electro tin-plated to provide low contact resistance.


AL9CU


Fig. 1


Fig. 2


Fig. 4


| Catalog Number* | Fig. No. | Wire Range Aluminum or Copper | StudHole | Dimensions |  |  |  |  |  |  | Recommended |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | D | L | N | $\begin{aligned} & \hline \text { ** } \\ & \text { W } \end{aligned}$ | E | T | ** | Tightening $\mathbf{A}$ Torque in-lb |
| KA6U | 1 | 14 Str. - 6 Str. | 1/4 | . 63 | 1.06 | . 25 | . 50 | - | . 09 | . 50 | 45 |
| KA2U | 1 | 14 Str. - 2 Str. |  | . 63 | 1.16 | . 31 | . 50 | - | . 10 | . 55 | 50 |
| KA25U | 1 | 14 Str. - 1/0 Str. |  | . 81 | 1.50 | . 44 | . 63 | - | . 19 | . 80 | 50 |
| KA26U | 2 | 6 Str. - 2/0 Str. |  | . 81 | 1.47 | . 47 | . 63 | - | . 19 | . 80 | 120 |
| KA29U | 2 | 6 Str. - 250 kcmil | 5/16 | . 94 | 2.00 | . 50 | 1.00 | - | . 25 | 1.13 | 275 |
| KA30U | 2 | 6 Str - 300 kcmil |  | . 94 | 2.00 | . 50 | 1.00 | - | . 25 | 1.12 | 275 |
| KA31U | 2 | 6 Str. - 350 kcmil | 3/8 | 1.03 | 2.25 | . 88 | 1.13 | - | . 25 | 1.25 | 275 |
| KA34U | 2 | 4 Str - 500 kcmil |  | 1.50 | 2.81 | . 88 | 1.51 | - | . 31 | 1.58 | 500 |
| KA36U | 2 | 2 Str. - 600 kcmil |  | 1.72 | 3.19 | . 78 | 1.50 | - | . 44 | 1.56 | 500 |
| KA40U | 2 | $300-800 \mathrm{kcmil}$ | 1/2 | 1.69 | 3.38 | . 88 | 1.75 | - | . 50 | 1.94 | 550 |
| KA44U | 2 | $500-1000 \mathrm{kcmil}$ |  | 1.69 | 3.38 | . 88 | 1.75 | - | . 50 | 1.94 | 550 |
| KKA31U-2N | 3 | 6 Str. - 350 kcmil | 1/2 | 3.16 | 5.50 | . 63 | 1.25 | 1.75 | . 38 | 1.50 | 275 |
| KA36U-2N | 4 | 2 Str - 600 kcmil |  | 3.22 | 4.69 | . 63 | 1.50 | 1.75 | . 44 | 1.57 | 500 |
| KA40U-2N | 4 | $300-800 \mathrm{kcmil}$ |  | 3.03 | 4.75 | . 63 | 1.75 | 1.75 | . 50 | 1.94 | 500 |
| KA44U-2N | 4 | 500-1000 kcmil |  | 3.03 | 4.75 | . 63 | 1.75 | 1.75 | . 50 | 1.94 | 550 |

* " N " indicates NEMA standard stud holes.
- Listed torque values are for maximum conductor sizes
accommodated. Consult UL486 Tables 7-4, 7-5, 7-6 for
smaller conductor sizes.
** Maximum dimension.

Blue highlighted items are industry standard and most frequently ordered.

## 

- Wide slot/finger design provides greater sidewall rigidity and can be used with a wide range of wire bundle sizes
- Material: Lead-free PVC
- UL recognized continuous use temperature: $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$
- UL 94 flammability rating of V-O
- Conforms with NFPA 79-2007 section 13.3.1 requirement for flame retardant material
- Provided with mounting holes
- Base and cover length is 6 feet


To order cover with protective film add "-F" to part number. 6" cover not available with film.

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Base |  |  |  |  |  |  |  |  |
| Part Number |  |  |  |  |  |  |  |  |

[^10]
## Lockout/

Tagout
\& Safety
Solutions

## STEEL, STAINLESS STEEL AND NON-METALLIC WINDOW KITS



## INDUSTRY STANDARDS

UL 508A Component Recognized; Type 4, 4X (stainless steel and non-metallic versions only), 3R, 12; File No. E61997.
UL 746C Component Recognized (non-metallic version only).
CSA Type 4, 4X (stainless steel and non-metallic versions only), 3R, 12; File No. 42186
NEMA/EEMAC 4, 4X (stainless steel and non-metallic versions
only), 3R, 12
IEC 60529, IP66

Steel Window Kits have a heavy gauge cold rolled steel formed frame (cleaned and treated for paint endurance and adhesion), painted ANSI 61 gray. The clear window is made of $.25-\mathrm{in}$. ( 6 mm ) impact-resistant polycarbonate material. They are ideal for indoor and outdoor Type 3R, 4 and 12 applications.
Stainless Steel Window kits have a formed heavy gauge Type 304 stainless steel frame with a brushed finish. The clear window is made of $.25-\mathrm{in}$. ( 6 mm ) impact-resistant polycarbonate material. They are ideal for indoor and outdoor Type 3R, 4X and 12 applications.
Non-Metallic Window kits are made of a single piece special polycarbonate blend, Makrolon, that has enhanced impact, UV, water exposure, absorption, and saturation resistance. They are ideal for indoor and outdoor Type 3R, 4, 4X and 12 applications. They are also ideal for non-metallic enclosures where exterior metallic materials are not allowed and can accommodate up to .25in. enclosure material thickness.

All Window kits are easy to install and require a simple rectangular enclosure cutout. All required hardware is furnished, along with assembly and cut- out instructions. The gasket material on all windows is resistant to oils, cutting fluids and many other liquids. Window kits of the same size use the same interchangeable cutout.

Custom sizes for Steel and Stainless Steel Window Kits are available along with different finishes and gasket materials. Consult nVent HOFFMAN for details.
BULLETIN: A80SW, A80W


| Catalog Number | AxB in. | AxB mm | Material | $\begin{aligned} & \text { Window Size } \\ & \mathrm{MxN} \text { (in.) } \end{aligned}$ | Window Size M x N (mm) | $\begin{aligned} & \text { Required Cutout } \\ & \text { Size GxH (in.) } \end{aligned}$ | Required Cutout Size G x H (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APWK53NF | $7.50 \times 5.50$ | $191 \times 140$ | Steel | $5.00 \times 3.00$ | $127 \times 76$ | $6.69 \times 4.69$ | $170 \times 119$ |
| APWK53NFSS | $7.50 \times 5.50$ | $191 \times 140$ | Stainless Steel | $5.00 \times 3.00$ | $127 \times 76$ | $6.69 \times 4.69$ | $170 \times 119$ |
| APWK53NFNM | $7.62 \times 5.62$ | $194 \times 143$ | Polycarbonate | $5.00 \times 3.00$ | $127 \times 76$ | $6.78 \times 4.78$ | $172 \times 121$ |
| APWK711NFSS | $9.50 \times 13.50$ | $241 \times 343$ | Stainless Steel | $11.00 \times 7.00$ | $279 \times 178$ | $8.69 \times 12.69$ | $221 \times 322$ |
| APWK95NF | $11.50 \times 8.00$ | $292 \times 203$ | Steel | $9.00 \times 5.50$ | $229 \times 140$ | $10.69 \times 7.19$ | $272 \times 183$ |
| APWK95NFSS | $11.50 \times 8.00$ | $292 \times 203$ | Stainless Steel | $9.00 \times 5.50$ | $229 \times 140$ | $10.69 \times 7.19$ | $272 \times 183$ |
| APWK95NFNM | $11.62 \times 8.12$ | $295 \times 203$ | Polycarbonate | $9.00 \times 5.50$ | $229 \times 140$ | $10.78 \times 7.28$ | $274 \times 185$ |
| APWK116NFNM | $13.62 \times 8.62$ | $346 \times 219$ | Polycarbonate | $11.00 \times 6.00$ | $279 \times 152$ | $12.78 \times 7.78$ | $325 \times 198$ |
| APWK133NF | $15.50 \times 5.50$ | $394 \times 140$ | Steel | $13.00 \times 3.00$ | $330 \times 76$ | $14.69 \times 4.69$ | $373 \times 119$ |
| APWK138NF | $15.50 \times 10.50$ | $394 \times 267$ | Steel | $13.00 \times 8.00$ | $330 \times 203$ | $14.69 \times 9.69$ | $373 \times 246$ |
| APWK138NFSS | $15.50 \times 10.50$ | $394 \times 267$ | Stainless Steel | $13.00 \times 8.00$ | $330 \times 203$ | $14.69 \times 9.69$ | $373 \times 246$ |
| APWK138NFNM | $15.62 \times 10.62$ | $397 \times 270$ | Polycarbonate | $13.00 \times 8.00$ | $330 \times 203$ | $14.69 \times 9.69$ | $375 \times 248$ |
| APWK715NFSS | $17.50 \times 9.50$ | $445 \times 241$ | Stainless Steel | $15.00 \times 7.00$ | $381 \times 178$ | $8.69 \times 16.69$ | $221 \times 424$ |
| APWK175NF | $19.50 \times 8.00$ | $495 \times 203$ | Steel | $17.00 \times 5.50$ | $432 \times 140$ | $18.69 \times 7.19$ | $475 \times 183$ |
| APWK1711NF | $19.50 \times 13.50$ | $495 \times 343$ | Steel | $17.00 \times 11.00$ | $432 \times 279$ | $18.69 \times 12.69$ | $475 \times 322$ |
| APWK1711NFSS | $19.50 \times 13.50$ | $495 \times 343$ | Stainless Steel | $17.00 \times 11.00$ | $432 \times 279$ | $18.69 \times 12.69$ | $475 \times 322$ |
| APWK720NFSS | $22.50 \times 9.50$ | $572 \times 241$ | Stainless Steel | $20.00 \times 7.00$ | $508 \times 178$ | $8.69 \times 21.69$ | $221 \times 551$ |
| APWK2315NF | $25.50 \times 17.50$ | $648 \times 445$ | Steel | $23.00 \times 15.00$ | $584 \times 381$ | $24.69 \times 16.69$ | $627 \times 424$ |
| APWK2315NFSS | $25.50 \times 17.50$ | $648 \times 445$ | Stainless Steel | $23.00 \times 15.00$ | $584 \times 381$ | $24.69 \times 16.69$ | $627 \times 424$ |
| APWK724NFSS | $26.50 \times 9.50$ | $673 \times 241$ | Stainless Steel | $24.00 \times 7.00$ | $610 \times 178$ | $8.69 \times 25.69$ | $221 \times 653$ |
| APWK729NFSS | $31.50 \times 9.50$ | $800 \times 241$ | Stainless Steel | $29.00 \times 7.00$ | $737 \times 178$ | $8.69 \times 30.69$ | $221 \times 780$ |
| APWK2919NF | $31.50 \times 21.50$ | $800 \times 546$ | Steel | $29.00 \times 19.00$ | $737 \times 483$ | $30.69 \times 20.69$ | $780 \times 525$ |
| APWK2919NFSS | $31.50 \times 21.50$ | $800 \times 546$ | Stainless Steel | $29.00 \times 19.00$ | $737 \times 483$ | $30.69 \times 20.69$ | $780 \times 525$ |
| APWK3523NF | $37.50 \times 25.50$ | $953 \times 648$ | Steel | $35.00 \times 23.00$ | $889 \times 584$ | $36.69 \times 24.69$ | $932 \times 627$ |

When determining if a window kit will fit in a door or cover, be sure to allow for gaskets, data pockets, door handles, latch rods and other parts attached to the door or cover.

# nvént|hoffman <br> <br> CONCEPT DEEP HINGED WINDOW KIT <br> <br> CONCEPT DEEP HINGED WINDOW KIT <br> INDUSTRY STANDARDS 

UL 508A, 508, File Number E61997: Type 12
NEMA Type 12
CSA File Number LR42186: Type 12
IEC 60529, IP66

## APPLICATION

Kit is hinged on left side and has a single-point slotted latch (optional locking or non-locking wing knob latch is also available). Aesthetic die-cast aluminum frame has .188 -in. ( $5-\mathrm{mm}$ ) thick, clear polycarbonate window. Two-inch space between enclosure front opening and window surface accommodates switches, lights, meters and other components. This kit can be used as an accessory window kit on larger standard Hoffman enclosure doors. Textured finish, ANSI 61 gray or RAL 7035 light gray.


BULLETIN: C2

| Catalog Number | AxBxC in. | AxBxC mm | Finish | Window Size M xN (mm) |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CWHD3136 | $12.20 \times 14.17 \times 3.31$ | $310 \times 360 \times 84$ | ANSI 61 | $253 \times 276$ |  |
| CWHD3136LG | $12.20 \times 14.17 \times 3.31$ | $310 \times 360 \times 84$ | RAL 7035 | $253 \times 276$ |  |
| CWHD4045 | $15.75 \times 17.72 \times 3.39$ | $400 \times 450 \times 86$ | ANSI 61 | $9.96 \times 10.86$ | $9.96 \times 10.86$ |
| CWHD4045LG | $15.75 \times 17.72 \times 3.39$ | $400 \times 450 \times 86$ | RAL 7035 | $13.50 \times 14.40$ | $343 \times 366$ |
| CWHD5557 | $21.65 \times 22.44 \times 3.50$ | $550 \times 570 \times 89$ | ANSI 61 | $493 \times 486$ |  |

TYPE 12 HINGED WINDOW KIT


## INDUSTRY STANDARDS

UL 508A Component Recognized; Type 12; File No. E61997
CSA Type 12; File No. 42186
NEMA/EEMAC Type 12
IEC 60529, IP55
For use as a viewing window where access to components mounted behind the window is required. Window is $.25-\mathrm{in}$. $(6-\mathrm{mm})$ clear polycarbonate. Easily mounted by drilling the appropriate mounting holes. All mounting hardware is provided. Continuous gaskets on all openings maintain UL Type 12 integrity. Finish is ANSI 61 gray polyester powder paint.
BULLETIN: A80W

| Catalog Number | Window Size M x N $\mathrm{in} . / \mathrm{mm}$ | Overall L x W in./mm | $\begin{aligned} & \mathrm{S} \\ & \mathrm{in} . / \mathrm{mm} \end{aligned}$ | $\begin{aligned} & \mathrm{T} \\ & \mathrm{in} . / \mathrm{mm} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| APWK1212H | $10.28 \times 10.28$ | $12.00 \times 12.00$ | 10.44 | 10.44 |
|  | $261 \times 261$ | $305 \times 305$ | 265 | 265 |
| APWK1612H | $14.28 \times 10.28$ | $16.00 \times 12.00$ | 10.44 | 14.44 |
|  | $363 \times 261$ | $406 \times 305$ | 265 | 367 |
| APWK2016H | $18.28 \times 14.28$ | $20.00 \times 16.00$ | 14.44 | 18.44 |
|  | $464 \times 363$ | $508 \times 406$ | 367 | 468 |
| APWK2020H | $18.28 \times 18.28$ | $20.00 \times 20.00$ | 18.44 | 18.44 |
|  | $464 \times 464$ | $508 \times 508$ | 468 | 468 |
| APWK2420H | $22.28 \times 18.28$ | $24.00 \times 20.00$ | 18.44 | 22.44 |
|  | $566 \times 464$ | $610 \times 508$ | 468 | 570 |
| APWK3024H | $28.28 \times 22.28$ | $30.00 \times 24.00$ | 22.44 | 28.44 |
|  | $718 \times 566$ | $762 \times 610$ | 570 | 722 |

## EXTRA-DEEP PUSHBUTTON ENCLOSURES, TYPE 12



INDUSTRY STANDARDS
UL 508A Listed; Type 12, 13; File No. E61997
cUL Listed per CSA C22.2 No. 94; Type 12, 13; File No. E61997
NEMA/EEMAC Type 12, 13
CSA File Number 42186: Type 12
IEC 60529, IP65

## APPLICATION

Extra-Deep Pushbutton Enclosures are designed to hold 30.5mm and $22.5-\mathrm{mm}$ pushbuttons and switches, with added depth to accommodate additional pushbutton contact blocks.

## SPECIFICATIONS

- 16 or 14 gauge stee
- Seams continuously welded and ground smooth
- Captivated cover screws thread into sealed wells
- Bonding provision on cover
- Grounding stud on body
- Oil-resistant gasket
- Factory stamped 4-way pushbutton holes
- Enclosures $6.00 \times 4.00 \times 4.75 \mathrm{in}$. ( $152 \times 102 \times 121 \mathrm{~mm})$ and larger have internal detachable hinge to hold cover open during wiring
- External welded-on mounting brackets for easy installation
- $30.5-\mathrm{mm}$ or $22.5-\mathrm{mm}$ size holes


## FINISH

ANSI 61 gray polyester powder paint inside and out

## ACCESSORIES

See also Accessories.
Industrial Corrosion Inhibitors
HOL-SEALERS Hole Seals
Tamper-Resistant Screws
BULLETIN: PB1

Standard Product

|  |  |  | Hole | Number |  | Mounting | Mounting | Overall | Overall |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Catalog Number | AxBxC in. | AxBxC mm | Size | of Holes | Gauge | 6 x H (in.) | 6 x H (mm) | L x W (in.) | L x W (mm) | T (in.) | T (mm) | Y (in.) | Y (mm) |
| E1PBX | $4.00 \times 4.00 \times 4.75$ | $102 \times 102 \times 121$ | 30.5 mm | 1 | 16 | $4.50 \times 3.12$ | $114 \times 79$ | $5.00 \times 4.22$ | $127 \times 107$ | 3.75 | 95 | 2.11 | 54 |
| E1PBXM | $4.00 \times 4.00 \times 4.75$ | $102 \times 102 \times 121$ | 22.5 mm | 1 | 16 | $4.50 \times 3.12$ | $114 \times 79$ | $5.00 \times 4.22$ | $127 \times 107$ | 3.75 | 95 | 2.11 | 54 |
| E2PBX | $6.00 \times 4.00 \times 4.75$ | $152 \times 102 \times 121$ | 30.5 mm | 2 | 14 | $6.50 \times 3.12$ | $165 \times 79$ | $7.00 \times 4.22$ | $178 \times 107$ | 3.75 | 95 | 1.98 | 50 |
| E2PBXM | $6.00 \times 4.00 \times 4.75$ | $152 \times 102 \times 121$ | 22.5 mm | 2 | 14 | $6.50 \times 3.12$ | $165 \times 79$ | $7.00 \times 4.22$ | $178 \times 107$ | 3.75 | 95 | 1.98 | 50 |
| E3PBX | $8.00 \times 4.00 \times 4.75$ | $203 \times 102 \times 121$ | 30.5 mm | 3 | 14 | $8.50 \times 3.12$ | $216 \times 79$ | $9.00 \times 4.22$ | $229 \times 107$ | 3.75 | 95 | 1.86 | 47 |
| E3PBXM | $8.00 \times 4.00 \times 4.75$ | $203 \times 102 \times 121$ | 22.5 mm | 3 | 14 | $8.50 \times 3.12$ | $216 \times 79$ | $9.00 \times 4.22$ | $229 \times 107$ | 3.75 | 95 | 1.86 | 47 |
| E4PBX | $10.00 \times 4.00 \times 4.75$ | $254 \times 102 \times 121$ | 30.5 mm | 4 | 14 | $10.50 \times 3.12$ | $267 \times 79$ | $11.00 \times 4.22$ | $279 \times 107$ | 3.75 | 95 | 1.73 | 44 |
| ELPDXM | $10.80 \times 4.800 \times 4.75$ | $254 \times 102 \times 121$ | 22.5 mm | 4 | 14 | $18.50 \times 3.12$ | $267 \times 70$ | $11.00 \times 1.22$ | $279 \times 107$ | 3.75 | 05 | 1.73 | 14 |
| E4SPBX | $7.25 \times 6.25 \times 4.75$ | $184 \times 159 \times 121$ | 30.5 mm | 4 | 14 | $7.75 \times 5.38$ | $197 \times 137$ | $8.25 \times 6.47$ | $210 \times 164$ | 6.00 | 152 | 2.61 | 66 |
| E4SPBXM | $7.25 \times 6.25 \times 4.75$ | $184 \times 159 \times 121$ | 22.5 mm | 4 | 14 | $7.75 \times 5.38$ | $197 \times 137$ | $8.25 \times 6.47$ | $210 \times 164$ | 6.00 | 152 | 2.61 | 66 |
| E6PBX | $9.50 \times 6.25 \times 4.75$ | $241 \times 159 \times 121$ | 30.5 mm | 6 | 14 | $10.00 \times 5.38$ | $254 \times 137$ | $10.50 \times 6.47$ | $267 \times 164$ | 6.00 | 152 | 2.61 | 66 |
| E6PBXM | $9.50 \times 6.25 \times 4.75$ | $241 \times 159 \times 121$ | 22.5 mm | 6 | 14 | $10.00 \times 5.38$ | $254 \times 137$ | $10.50 \times 6.47$ | $267 \times 164$ | 6.00 | 152 | 2.61 | 66 |
| E9PBX | $9.50 \times 8.25 \times 4.75$ | $241 \times 210 \times 121$ | 30.5 mm | 9 | 14 | $10.00 \times 7.62$ | $254 \times 194$ | $10.50 \times 8.72$ | $267 \times 221$ | 8.25 | 210 | 2.61 | 66 |
| E9PBXM | $9.50 \times 8.50 \times 4.75$ | $241 \times 216 \times 121$ | 22.5 mm | 9 | 14 | $10.00 \times 7.62$ | $254 \times 194$ | $10.50 \times 8.72$ | $267 \times 221$ | 8.25 | 210 | 2.61 | 66 |
| E10PBX | $14.00 \times 6.25 \times 4.75$ | $356 \times 159 \times 121$ | 30.5 mm | 10 | 14 | $14.50 \times 5.38$ | $368 \times 137$ | $15.00 \times 6.47$ | $381 \times 164$ | 6.00 | 152 | 2.61 | 66 |
| E10PBXM | $14.00 \times 6.25 \times 4.75$ | $356 \times 159 \times 121$ | 22.5 mm | 10 | 14 | $14.50 \times 5.38$ | $368 \times 137$ | $15.00 \times 6.47$ | $381 \times 164$ | 6.00 | 152 | 2.61 | 66 |
| E12PBX | $11.75 \times 8.50 \times 4.75$ | $298 \times 216 \times 121$ | 30.5 mm | 12 | 14 | $12.25 \times 7.62$ | $311 \times 194$ | $12.75 \times 8.72$ | $324 \times 221$ | 8.25 | 210 | 2.61 | 66 |
| E12PBXM | $11.75 \times 8.50 \times 4.75$ | $298 \times 216 \times 121$ | 22.5 mm | 12 | 14 | $12.25 \times 7.62$ | $311 \times 194$ | $12.75 \times 8.72$ | $324 \times 221$ | 8.25 | 210 | 2.61 | 66 |
| E16SPBXV | $20.75 \times 6.25 \times 4.75$ | $527 \times 159 \times 121$ | 30.5 mm | 16 | 14 | $21.25 \times 5.38$ | $540 \times 137$ | $21.75 \times 6.47$ | $552 \times 164$ | 6.00 | 152 | 2.61 | 66 |
| E16SPBXVM | $20.75 \times 6.25 \times 4.75$ | $527 \times 159 \times 121$ | 22.5 mm | 16 | 14 | $21.25 \times 5.38$ | $540 \times 137$ | $21.75 \times 6.47$ | $552 \times 164$ | 6.00 | 152 | 2.61 | 66 |
| E16PBX | $11.75 \times 10.75 \times 4.75$ | $298 \times 273 \times 121$ | 30.5 mm | 16 | 14 | $12.25 \times 9.88$ | $311 \times 251$ | $12.75 \times 10.97$ | $324 \times 279$ | 10.50 | 267 | 2.61 | 66 |
| E16PBXM | $11.75 \times 10.75 \times 4.75$ | $298 \times 273 \times 121$ | 22.5 mm | 16 | 14 | $12.25 \times 9.88$ | $311 \times 251$ | $12.75 \times 10.97$ | $324 \times 279$ | 10.50 | 267 | 2.61 | 66 |
| E20PBX | $14.00 \times 10.75 \times 4.75$ | $356 \times 273 \times 121$ | 30.5 mm | 20 | 14 | $14.50 \times 9.88$ | $368 \times 251$ | $15.00 \times 10.97$ | $381 \times 279$ | 10.50 | 267 | 2.61 | 66 |
| E20PBXM | $14.00 \times 10.75 \times 4.75$ | $356 \times 273 \times 121$ | 22.5 mm | 20 | 14 | $14.50 \times 9.88$ | $368 \times 251$ | $15.00 \times 10.97$ | $381 \times 279$ | 10.50 | 267 | 2.61 | 66 |
| E25PBX | $14.00 \times 13.00 \times 4.75$ | $356 \times 330 \times 121$ | 30.5 mm | 25 | 14 | $14.50 \times 12.12$ | $368 \times 308$ | $15.00 \times 13.22$ | $381 \times 336$ | 12.75 | 324 | 2.61 | 66 |
| E25PBXM | $14.00 \times 13.00 \times 4.75$ | $356 \times 330 \times 121$ | 22.5 mm | 25 | 14 | $14.50 \times 12.12$ | $368 \times 308$ | $15.00 \times 13.22$ | $381 \times 336$ | 12.75 | 324 | 2.61 | 66 |


C2664-C

.19 (TYP)
[5]

30.5 mm 4 -WAY


| 0 | 0 | 0 <br> 0 <br> 0 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E1PBX EIPBXM | $\begin{aligned} & \text { E2PBX } \\ & \text { E2PBXM } \end{aligned}$ | $\begin{aligned} & \text { E3PBX } \\ & \text { E3PBXM } \end{aligned}$ |  |  |  | $\begin{array}{ll}\circ & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ |  |  |  |
|  |  |  |  | $\bigcirc 0$ |  | $\begin{array}{ll}\circ & 0 \\ \bigcirc & 0 \\ 0\end{array}$ |  | 0000 | $\bigcirc 0000$ |
|  |  |  |  | $\bigcirc \bigcirc$ | $\bigcirc 00$ | $\bigcirc \bigcirc$ | 0000 | $\bigcirc 000$ | $\bigcirc 0000$ |
| $\bigcirc$ |  | $\bigcirc 0$ | $\bigcirc 00$ | $\bigcirc \bigcirc$ | $\bigcirc 00$ | $\bigcirc \bigcirc$ | $\bigcirc 000$ | $\bigcirc 000$ | $\bigcirc \bigcirc \bigcirc \bigcirc$ |
| $\bigcirc$ | $\bigcirc \bigcirc$ | $\bigcirc \bigcirc$ | $\bigcirc \bigcirc 0$ | $\bigcirc \bigcirc$ | $\bigcirc 00$ | $\bigcirc \bigcirc$ | $\bigcirc 000$ | $\bigcirc 000$ | $\bigcirc 0000$ |
| $\bigcirc$ | $\bigcirc \bigcirc$ | $\bigcirc \bigcirc$ | $\bigcirc \bigcirc \bigcirc$ | $\bigcirc \bigcirc$ | $\bigcirc \bigcirc \bigcirc$ | $\bigcirc \bigcirc$ | $\bigcirc 000$ | $\bigcirc 000$ | $\bigcirc 0000$ |
| E4PBX | E4SPBX | E6PBX | E9PBX | E10PBX | E12PBX | E16SPBX | E16PBX | E20PBX | E25PBX |
| E4PBXM | E4SPBXM | E6PBXM | E9PBXM | E10PBXM | E12PBXM | E16SPBXM | E16PBXM | E20PBXM | E25PBXM |

## NPort 5200A Series

## 2-port RS-232/422/485 serial device servers



## Features and Benefits

- Fast 3-step web-based configuration
- Surge protection for serial, Ethernet, and power
- COM port grouping and UDP multicast applications
- Screw-type power connectors for secure installation
- Dual DC power inputs with power jack and terminal block
- Versatile TCP and UDP operation modes


## Certifications



## Introduction

The NPort® 5200A device servers are designed to make serial devices network-ready in an instant and give your PC software direct access to serial devices from anywhere on the network. The NPort® 5200A device servers are ultra-lean, ruggedized, and user-friendly, making simple and reliable serial-to-Ethernet solutions possible.

## A Greener Serial-to-Ethernet Solution

The MiiNe is a small but powerful Arm-based serial-to-Ethernet SoC with RAM and Flash embedded. With the MiiNe inside, the NPort® 5200A Series saves at least $50 \%$ on power consumption compared to existing solutions on the market, helping engineers meet the tough environmental compliance challenges found in today's industrial environments.

## Surge Protection for Serial, Ethernet, and Power

Surge, which is typically caused by high voltages that result from switching and lightning transients, is a common threat to all electrical devices. Moxa's leading-edge surge immunity solution, which is applied to the NPort® ${ }^{\text {5 }}$ 5200A's serial, power, and Ethernet lines, is tested and proven compliant with IEC 61000-4-5. This state-of-the-art surge protection provides a robust serial-to-Ethernet solution that can protect electrical devices from voltage spikes and withstand electrically noisy environmental conditions.

## 3-Step Web-based Configuration

The NPort® 5200A's 3-step web-based configuration tool is straightforward and user-friendly. The NPort® 5200A's web console guides users through three simple configuration steps that are necessary to activate the serial-to-Ethernet application. With this fast 3-step web-based configuration, a user only needs to spend an average of 30 seconds to complete the NPort® settings and enable the application, saving a great amount of time and effort.

## COM Port Grouping

The NPort® 5200A's COM Grouping function allows you to create a COM Group and redirect data from it to several physical COM ports on NPort device servers. With COM Grouping, you will be able to control multiple physical serial ports simultaneously by operating only one COM port.

## Appearance



## Specifications

Ethernet Interface
10/100BaseT(X) Ports (RJ45 connector) 1
$\begin{array}{ll}\text { Magnetic Isolation Protection } & 1.5 \mathrm{kV} \text { (built-in) }\end{array}$

Ethernet Software Features
Configuration Options

Management

## Filter

Windows Real COM Drivers

## Linux Real TTY Drivers

Fixed TTY Drivers

## Android API

MIB

Serial Interface

| Connector | NPort 5210A/5250A Series: DB9 male <br> NPort 5230A Series: 5-pin terminal block |
| :--- | :--- |
| No. of Ports | 2 |
| Serial Standards | NPort 5210A Series: RS-232 <br>  <br> NPort 5230A Series: RS-422, RS-485 |
|  | NPort 5250A Series: RS-232, RS-422, RS-485 |


| Operation Modes | Disabled, Ethernet Modem, Pair Connection, Real COM, Reverse Telnet, RFC2217, TCP Client, TCP Server, UDP |
| :---: | :---: |
| Baudrate | Supports standard baudrates (unit=bps): 50, 75, 110, 134, 150, $300,600,1200,1800$, $2400,4800,7200,9600,19200,38400,57600,115200,230.4 \mathrm{k}, 460.8 \mathrm{k}, 921.6 \mathrm{k}$ |
| Data Bits | 5, 6, 7, 8 |
| Stop Bits | 1, 1.5, 2 |
| Parity | None, Even, Odd, Space, Mark |
| Flow Control | RTS/CTS (RS-232 only), DTR/DSR (RS-232 only), XON/XOFF |
| Pull High/Low Resistor for RS-485 | 1 kilo-ohm, 150 kilo-ohms |
| RS-485 Data Direction Control | ADDC® (automatic data direction control) |
| Terminator for RS-485 | 120 ohms |
| Serial Signals |  |
| RS-232 | TxD, RxD, RTS, CTS, DTR, DSR, DCD, GND |
| RS-422 | Tx+, Tx-, Rx+, Rx-, GND |
| RS-485-4w | Tx+, Tx-, Rx+, Rx-, GND |
| RS-485-2w | Data+, Data-, GND |
| Power Parameters |  |
| Input Current | 119 mA @ 12 VDC |
| Input Voltage | 12 to 48 VDC |
| No. of Power Inputs | 2 |
| Power Connector | 1 removable 3-contact terminal block(s) <br> Power input jack |
| Reliability |  |
| Automatic Reboot Trigger | Built-in WDT |
| Physical Characteristics |  |
| Housing | Metal |
| Dimensions (with ears) | $100 \times 111 \times 26 \mathrm{~mm}(3.94 \times 4.37 \times 1.02 \mathrm{in})$ |
| Dimensions (without ears) | $77 \times 111 \times 26 \mathrm{~mm}$ ( $3.03 \times 4.37 \times 1.02 \mathrm{in}$ ) |
| Weight | $340 \mathrm{~g}(0.75 \mathrm{lb})$ |
| Installation | Desktop, DIN-rail mounting (with optional kit), Wall mounting |
| Environmental Limits |  |
| Operating Temperature | Standard Models: 0 to $60^{\circ} \mathrm{C}$ ( 32 to $140^{\circ} \mathrm{F}$ ) Wide Temp. Models: -40 to $75^{\circ} \mathrm{C}\left(-40\right.$ to $167^{\circ} \mathrm{F}$ ) |
| Storage Temperature (package included) | -40 to $75^{\circ} \mathrm{C}\left(-40\right.$ to $\left.167^{\circ} \mathrm{F}\right)$ |
| Ambient Relative Humidity | 5 to 95\% (non-condensing) |

## Standards and Certifications

| EMC | EN 55032/24 |
| :---: | :---: |
| EMS | IEC 61000-4-2 ESD: Contact: 8 kV; Air: 15 kV IEC 61000-4-3 RS: 80 MHz to $1 \mathrm{GHz}: 10 \mathrm{~V} / \mathrm{m}$ <br> IEC 61000-4-4 EFT: Power: 2 kV; Signal: 1 kV <br> IEC 61000-4-5 Surge: Power: 2 kV; Signal: 1 kV <br> IEC 61000-4-6 CS: 150 kHz to $80 \mathrm{MHz}: 10 \mathrm{~V} / \mathrm{m}$; Signal: $10 \mathrm{~V} / \mathrm{m}$ <br> IEC 61000-4-8 PFMF <br> IEC 61000-4-11 |
| EMI | CISPR 32, FCC Part 15B Class A |
| Safety | UL 60950-1 |
| Declaration |  |
| Green Product | RoHS, CRoHS, WEEE |
| MTBF |  |
| Time | 847,750 hrs |
| Standards | Telcordia (Bellcore) Standard TR/SR |
| Warranty |  |
| Warranty Period | 5 years |
| Details | See www.moxa.com/warranty |
| Package Contents |  |
| Device | $1 \times$ NPort 5200A Series device server |
| Power Supply | $1 \times$ power adapter, suitable for your region (standard temp. models only) |
| Documentation | $1 \times$ quick installation guide $1 \times$ warranty card |

## Dimensions

## NPort 5210A

Unit: mm (inch)


## NPort 5250A

Unit: mm (inch)


## NPort 5230A

Unit: mm (inch)


Ordering Information

| Model Name | Operating Temp. | Baudrate | Serial Standards | No. of Serial Ports | Input Current | Input Voltage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NPort 5210A | 0 to $55^{\circ} \mathrm{C}$ | 50 bps to 921.6 kbps | RS-232 | 2 | 119 mA @ 12 VDC | 12-48 VDC |
| NPort 5210A-T | -40 to $75^{\circ} \mathrm{C}$ | 50 bps to 921.6 kbps | RS-232 | 2 | 119 mA @ 12 VDC | 12-48 VDC |
| NPort 5230A | 0 to $55^{\circ} \mathrm{C}$ | 50 bps to 921.6 kbps | RS-422/485 | 2 | 119 mA @ 12 VDC | 12-48 VDC |
| NPort 5230A-T | -40 to $75^{\circ} \mathrm{C}$ | 50 bps to 921.6 kbps | RS-422/485 | 2 | 119 mA @ 12 VDC | 12-48 VDC |
| NPort 5250A | 0 to $55^{\circ} \mathrm{C}$ | 50 bps to 921.6 kbps | RS-232/422/485 | 2 | 119 mA @ 12 VDC | 12-48 VDC |
| NPort 5250A-T | -40 to $75^{\circ} \mathrm{C}$ | 50 bps to 921.6 kbps | RS-232/422/485 | 2 | 119 mA @ 12 VDC | 12-48 VDC |

## Accessories (sold separately)

## Cables

CBL-F9M9-150
CBL-F9M9-20

Connectors
ADP-RJ458P-DB9F
Mini DB9F-to-TB

DIN-Rail Mounting Kits
DK35A

Power Adapters
PWR-12050-WPAU-S1

PWR-12050-WPCN-S1
PWR-12050-WPEU-S1

PWR-12050-WPUK-S1

PWR-12050-WPUSJP-S1

PWR-12150-AU-SA-T

PWR-12150-CN-SA-T

PWR-12150-EU-SA-T

PWR-12150-UK-SA-T

DB9 female to DB9 male serial cable, 1.5 m
DB9 female to DB9 male serial cable, 20 cm

DB9 female to RJ45 connector
DB9 female to terminal block connector

DIN-rail mounting kit, 35 mm

Locking barrel plug, 12 VDC, 0.5 A, 100 to 240 VAC, Australia (AU) plug, 0 to $40^{\circ} \mathrm{C}$ operating temperature

Locking barrel plug, 12 VDC, 0.5 A, 100 to 240 VAC, China (CN) plug, 0 to $40^{\circ} \mathrm{C}$ operating temperature
Locking barrel plug, 12 VDC, 0.5 A, 100 to 240 VAC, Continental Europe (EU) plug, 0 to $40^{\circ} \mathrm{C}$ operating temperature

Locking barrel plug, 12 VDC, 0.5 A, 100 to 240 VAC, United Kingdom (UK) plug, 0 to $40^{\circ} \mathrm{C}$ operating temperature

Locking barrel plug, 12 VDC, 0.5 A, 100 to 240 VAC, United States/Japan (US/JP) plug, 0 to $40^{\circ} \mathrm{C}$ operating temperature

Locking barrel plug, 12 VDC, 1.5 A, 100 to 240 VAC, Australia (AU) plug, -40 to $75^{\circ} \mathrm{C}$ operating temperature

Applicable Models:
NPort 5210A-T
NPort 5230A-T
NPort 5250A-T
Locking barrel plug, 12 VDC, $1.5 \mathrm{~A}, 100$ to 240 VAC, China (CN) plug, -40 to $75^{\circ} \mathrm{C}$ operating temperature

Applicable Models:
NPort 5210A-T
NPort 5230A-T
NPort 5250A-T
Locking barrel plug, 12 VDC, 1.5 A, 100 to 240 VAC, Continental Europe (EU) plug, -40 to $75^{\circ} \mathrm{C}$ operating temperature

Applicable Models:
NPort 5210A-T
NPort 5230A-T
NPort 5250A-T
Locking barrel plug, 12 VDC, 1.5 A, 100 to 240 VAC, United Kingdom (UK) plug, -40 to $75^{\circ} \mathrm{C}$ operating temperature

Applicable Models:
NPort 5210A-T
NPort 5230A-T
NPort 5250A-T
PWR-12150-USJP-SA-T
Locking barrel plug, 12 VDC 1.5 A, 100 to 240 VAC, United States/Japan (US/JP) plug, -40 to $75^{\circ} \mathrm{C}$ operating temperature

Applicable Models:
NPort 5210A-T
NPort 5230A-T
NPort 5250A-T

## Power Cords

CBL-PJ21NOPEN-BK-30 Locking barrel plug to bare-wire cable
© Moxa Inc. All rights reserved. Updated May 05, 2020.

This document and any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of Moxa Inc. Product specifications subject to change without notice. Visit our website for the most up-to-date product information.

# NPort 5200 Series User's Manual 

Ninth Edition, September 2014
www.moxa.com/product
© 2013 Moxa Inc. All rights reserved.

## NPort 5200 Series User's Manual

The software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement.

## Copyright Notice

© 2013 Moxa Inc. All rights reserved.

## Trademarks

The MOXA logo is a registered trademark of Moxa Inc.


#### Abstract

All other trademarks or registered marks in this manual belong to their respective manufacturers.


## Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa.

Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication.

## Technical Support Contact I nformation

## www.moxa.com/ support

## Moxa Americas

| Toll-free: | $1-888-669-2872$ |
| :--- | :--- |
| Tel: | $+1-714-528-6777$ |
| Fax: | $+1-714-528-6778$ |

## Moxa Europe

Tel: $\quad+49-89-37003$ 99-0
Fax: $\quad+49-89-37003$ 99-99

Moxa China (Shanghai office)
Toll-free: 800-820-5036
Tel: +86-21-5258-9955
Fax: +86-21-5258-5505

## Moxa Asia-Pacific

Tel: +886-2-8919-1230
Fax: +886-2-8919-1231

## Table of Contents

1. I ntroduction ..... 1-1
Overview ..... 1-2
Package Checklist ..... 1-2
Product Features ..... 1-2
Product Specifications ..... 1-3
2. Getting Started ..... 2-1
Panel Layout ..... 2-2
Connecting the Hardware. ..... 2-3
Wiring Requirements ..... 2-3
Connecting the Power ..... 2-3
Grounding the NPort 5200 ..... 2-3
Connecting to the Network ..... 2-4
Connecting to a Serial Device ..... 2-4
LED Indicators ..... 2-4
3. I nitial I P Address Configuration ..... 3-1
Initializing the NPort 5200's IP Address ..... 3-2
Factory Default IP Address ..... 3-2
NPort Administration Suite ..... 3-2
ARP. ..... 3-2
Telnet Console ..... 3-3
Serial Console (19200, n, 8, 1) ..... 3-6
4. Choosing the Proper Operation Mode ..... 4-1
Overview ..... 4-2
Real COM Mode ..... 4-2
TCP Server Mode ..... 4-3
TCP Client Mode ..... 4-3
UDP Mode ..... 4-4
Pair Connection Mode ..... 4-4
Reverse Telnet Mode ..... 4-4
Disabled Mode ..... 4-5
5. Web Console Configuration ..... 5-1
Opening Your Browser ..... 5-2
Basic Settings ..... 5-4
Time ..... 5-4
Web/Telnet Console. ..... 5-5
Network Settings ..... 5-6
SNMP Settings ..... 5-8
IP Address Report ..... 5-8
Serial Settings ..... 5-9
Serial Parameters ..... 5-9
Operating Settings ..... 5-10
Real COM Mode ..... 5-11
TCP Server Mode ..... 5-13
TCP Client Mode ..... 5-16
UDP Mode ..... 5-20
Pair Connection Mode ..... 5-22
Pair Connection Master Mode ..... 5-22
Pair Connection Slave Mode ..... 5-23
Reverse Telnet Mode ..... 5-23
Disabled Mode ..... 5-24
Accessible IP Settings ..... 5-25
Auto Warning Settings ..... 5-26
Auto warning: Email and SNMP trap ..... 5-26
Mail Server ..... 5-26
SNMP Trap Server. ..... 5-27
Event Type ..... 5-27
DCD changed ..... 5-27
DSR changed ..... 5-28
Monitor. ..... 5-28
Monitor Line ..... 5-28
Monitor Async ..... 5-29
Monitor Async-Settings ..... 5-29
Change Password ..... 5-29
Load Factory Default ..... 5-30
6. Configuring NPort Administrator ..... 6-1
Overview ..... 6-2
Installing NPort Administrator ..... 6-2
Configuration ..... 6-4
Broadcast Search ..... 6-5
Unlock Password Protection ..... 6-6
Configuring the NPort 5200 ..... 6-7
Upgrading the Firmware ..... 6-9
Export Configuration ..... 6-10
Import Configuration ..... 6-11
Monitor ..... 6-11
Port Monitor ..... 6-17
COM Mapping ..... 6-17
On-line COM Mapping ..... 6-18
Off-line COM Mapping ..... 6-22
IP Address Report ..... 6-23
7. NPort CE Driver Manager for Windows CE ..... 7-1
Overview ..... 7-2
Installing NPort CE Driver Manager ..... 7-2
Using NPort CE Driver Manager ..... 7-2
8. IP Serial LIB ..... 8-1
Overview ..... 8-2
IP Serial LIB Function Groups ..... 8-2
Example Program ..... 8-3
A. Pinouts and Cable Wiring ..... A-1
Port Pinout Diagrams ..... A-2
Ethernet Port Pinouts ..... A-2
Serial Port Pinouts ..... A-2
Cable Wiring Diagrams ..... A-3
Ethernet Cables ..... A-3
Serial Cables ..... A-3
B. Well Known Port Numbers ..... B-1
C. SNMP Agents with MIB II \& RS-232 like Groups ..... C-1
D. Auto IP Report Protocol ..... D-1
E. Compliance Notice. ..... E-1

## I ntroduction

The NPort 5200 Series of advanced serial device servers make it easy to network enable your serial devices. The NPort 5200 Series includes 4 models: NPort 5210/5210-T (2 ports for RS-232), NPort 5230/5230-T (1 port for RS-232; 1 port for RS-422/485), NPort 5232/5232-T (2 ports for RS-422/485), and NPort 5232I/5232I-T (2 ports for RS-422/485, with isolation protection). In this manual, we refer to the four products collectively as "NPort 5200" or "NPort 5200 Series."

The following topics are covered in this chapter:

- Overview
- Package Checklist
- Product Features
- Product Specifications


## Overview

The NPort 5200 Series serial device servers are designed to make your industrial serial devices Internet ready in no time. The compact size of NPort 5200 device servers makes them the ideal choice for connecting your RS-232 (NPort 5210/5230/5210-T/5230-T) or RS-422/485 (NPort 5230/5232/52321/5230-T/5232-T/5232I-T) serial devices-such as PLCs, meters, and sensors-to an IP-based Ethernet LAN, making it possible for your software to access serial devices from anywhere over a local LAN or the Internet.

The NPort 5200 serial device servers ensure the compatibility of network software that uses a standard network API (Winsock or BSD Sockets) by providing TCP Server Mode, TCP Client Mode, and UDP Mode. And thanks to the NPort 5200 Series' Real COM/TTY drivers, software that works with COM/TTY ports can be set up to work over a TCP/IP network, without modifying your serial COM software applications. This excellent feature preserves your software investment and lets you enjoy the benefits of networking your serial devices instantly.

The NPort 5200 serial device servers support automatic IP configuration protocols (DHCP, BOOTP) and manual configuration via the handy web browser console. Both methods ensure quick and effective installation. And with the NPort 5200's Windows Utility, installation is very straightforward, since all system parameters can be stored and then copied to other device servers simultaneously.

## Package Checklist

The NPort 5200 Series products are shipped with the following items:
Standard Accessories

- 1 NPort 5200 2-port serial device server
- Document \& Software CD
- NPort 5200 Series Quick Installation Guide

Optional Accessories

- DK-35A

DIN-Rail Mounting Kit ( 35 mm )

- CBL-RJ 45M9-150

RJ 45 (8-pin) to DB9 (M) cable, 150 cm

- CBL-RJ45F9-150

RJ 45 (8-pin) to DB9 (F) cable, 150 cm

- CBL-RJ45M25-150 RJ 45 (8-pin) to DB25 (M) cable, 150 cm
- CBL-RJ45F25-150 RJ 45 (8-pin) to DB25 (F) cable, 150 cm
NOTE: Notify your sales representative if any of the above items is missing or damaged.


## Product Features

The NPort 5200 Series device servers have the following features:

- Make your serial devices Internet ready instantly
- Versatile socket operation modes, including TCP Server, TCP Client, and UDP
- Easy-to-use Windows Utility for installing multiple device servers
- Cigarette pack size
- Auto detectable $10 / 100 \mathrm{Mbps}$ Ethernet port
- 2- or 4-wire RS-485 (NPort 5230/5232/5232I/5230-T/5232-T/5232I-T) with patented ADDC ${ }^{\text {TM }}$ (Automatic Data Direction Control)
- SNMP MIB-II supported for network management
- Pair Connection mode for connecting two serial devices over a network without a PC
- Reverse Telnet


## Product Specifications

## Ethernet I nterface

## Number of Ports: 1

Speed: 10/100 Mbps, auto MDI/MDIX
Connector: 8-pin RJ45
Magnetic Isolation Protection: 1.5 kV built-in
Serial I nterface
Number of Ports: 2
Serial Standards:
NPort 5210: RS-232
NPort 5230: 1 RS-232 port, 1 RS-422/485 port
NPort 5232/52321: RS-422/485

## Connector:

NPort 5210: RJ45 (8 pins)
NPort 5230/5232/5232I: Terminal Block (5 contacts per port)
Serial Line Protection: 2 kV isolation protection (NPort 52321/52321-T)
RS-485 Data Direction Control: ADDC® (automatic data direction control)
Serial Communication Parameters
Data Bits: 5, 6, 7, 8
Stop Bits: 1, 1.5, 2
Parity: None, Even, Odd, Space, Mark
Flow Control: RTS/CTS (RS-232 only), DTR/DSR (NPort 5210 only), XON/XOFF
Baudrate: 110 bps to 230.4 kbps
Serial Signals
RS-232:
NPort 5210: TxD, RxD, RTS, CTS, DTR, DSR, DCD, GND
NPort 5230: TxD, RxD, RTS, CTS, GND
RS-422: Tx+, Tx-, Rx+, Rx-, GND
RS-485-4w: Tx+, Tx-, Rx+, Rx-, GND
RS-485-2w: Data+, Data-, GND
Software
Network Protocols: ICMP, IPv4, TCP, UDP, DHCP, BOOTP, Telnet, DNS, SNMP V1, HTTP, SMTP, SNTP
Configuration Options: Web Console, Serial Console (NPort 5210/5230 only), Telnet Console, Windows Utility
Windows Real COM Drivers: Windows 95/98/ME/NT/2000, Windows XP/2003/Vista/2008/7/8/8.1
(x86/x64), Windows 2008 R2/2012/2012 R2 (x64), Windows Embedded CE 5.0/6.0, Windows XP Embedded
Fixed TTY Drivers: SCO Unix, SCO OpenServer, UnixWare 7, QNX 4.25, QNX 6, Solaris 10, FreeBSD, AIX 5.x, HP-UX 11i, Mac OS X
Linux Real TTY Drivers: Linux 2.4.x, 2.6.x, 3.x
Physical Characteristics
Housing: Metal
Weight:
NPort 5210: 340 g
NPort 5230/5232: 360 g
NPort 52321: 380 g

## Dimensions:

NPort 5210/5230/5232:
Without ears: $67 \times 100.4 \times 22 \mathrm{~mm}(2.64 \times 3.95 \times 0.87 \mathrm{in})$
With ears: $90 \times 100.4 \times 22 \mathrm{~mm}(3.54 \times 3.95 \times 0.87 \mathrm{in})$
NPort 5232I:
Without ears: $67 \times 100.4 \times 35 \mathrm{~mm}(2.64 \times 3.95 \times 1.37 \mathrm{in})$
With ears: $90 \times 100.4 \times 35 \mathrm{~mm}(3.54 \times 3.95 \times 1.37 \mathrm{in})$

## Environmental Limits

## Operating Temperature:

Standard Models: 0 to $55^{\circ} \mathrm{C}$ ( 32 to $131^{\circ} \mathrm{F}$ )
Wide Temp. Models: -40 to $75^{\circ} \mathrm{C}\left(-40\right.$ to $167^{\circ} \mathrm{F}$ )
Storage Temperature: -40 to $75^{\circ} \mathrm{C}\left(-40\right.$ to $\left.167^{\circ} \mathrm{F}\right)$
Ambient Relative Humidity: 5 to $95 \%$ (non-condensing)
Altitude: Up to 2000 m
Note: Please contact Moxa if you require products guaranteed to function properly at higher altitudes.

## Power Requirements

Input Voltage: 12 to 48 VDC

## Power Consumption:

NPort 5210: 325 mA @ $12 \mathrm{~V}, 190 \mathrm{~mA} @ 24 \mathrm{~V}$
NPort 5230: 325 mA @ $12 \mathrm{~V}, 190 \mathrm{~mA}$ @ 24 V
NPort 5232: 280 mA @ $12 \mathrm{~V}, 150 \mathrm{~mA} @ 24 \mathrm{~V}$
NPort 52321: 365 mA @ $12 \mathrm{~V}, 200 \mathrm{~mA} @ 24 \mathrm{~V}$
Standards and Certifications
EMI : EN55022 Class A, FCC part 15 Subpart B Class A

## EMS:

EN 61000-4-2 ESD: contact 4 kV ; air 8 kV
EN 61000-4-3 RS: $3 \mathrm{~V} / \mathrm{m}$ ( 80 MHz to 1 GHz )
EN 61000-4-4 EFT: Power 1 kV; Signal 0.5 kV
EN 61000-4-5 Surge: AC 1 kV
EN 61000-4-6 CS: 3 V
EN 61000-4-8
EN 61000-4-11
Safety: UL 60950-1, EN 60950-1
EMC: 55022/24
Marine: DNV
Medical: (NPort 5210 only) EN 60601-1-2 Class B, EN55011
Reliability
Alert Tools: Built-in buzzer and RTC (real-time clock)
Automatic Reboot Trigger: Built-in WDT (watchdog timer)
MTBF (mean time between failures) :
NPort 5210: 134,850 hrs
NPort 5230: 106,955 hrs
NPort 5232: 102,344 hrs
NPort 52321: 87,083 hrs
Warranty
Warranty Period: 5 years
Details: See www.moxa.com/warranty

Getting Started

In this chapter, we give instructions on how to install the NPort 5200 device servers. Software installation is covered in subsequent chapters.

The following topics are covered in this chapter:
$\square$ Panel Layout

- Connecting the Hardware
$>$ Wiring Requirements
> Connecting the Power
> Grounding the NPort 5200
> Connecting to the Network
> Connecting to a Serial Device
> LED Indicators


## Panel Layout

NPort 5210/ 5210-T


NPort 5232/5232-T


## Connecting the Hardware

This section describes how to connect the NPort 5200 to serial devices for first time testing purposes. We cover Wiring Requirements, Connecting the Power, Grounding the NPort 5200, Connecting to the Network, Connecting to a Serial Device, and LED I ndicators.

## Wiring Requirements

## ATTENTION

## Safety First!

Be sure to disconnect the power cord before installing and/or wiring your NPort 5200.

## Wiring Caution!

Calculate the maximum possible current in each power wire and common wire. Observe all electrical codes dictating the maximum current allowable for each wire size.

If the current goes above the maximum ratings, the wiring could overheat, causing serious damage to your equipment.

## Temperature Caution!

Please take care when handling the NPort 5200. When plugged in, the NPort 5200's internal components generate heat, and consequently the casing may feel hot to the touch.

You should also heed the following:

- Use separate paths to route wiring for power and devices. If power wiring and device wiring paths must cross, make sure the wires are perpendicular at the intersection point.

NOTE: Do not run signal or communication wiring and power wiring in the same wire conduit. To avoid interference, wires with different signal characteristics should be routed separately.

- You can use the type of signal transmitted through a wire to determine which wires should be kept separate. The rule of thumb is that wiring that shares similar electrical characteristics can be bundled together.
- Keep input wiring and output wiring separate.
- Where necessary, it is strongly advised that you label wiring to all devices in the system.


## Connecting the Power

Connect the 12-48 VDC power line with the NPort 5200's terminal block. If the power is properly supplied, the "Ready" LED will show a solid red color until the system is ready, at which time the "Ready" LED will change to a green color.

## Grounding the NPort 5200

Grounding and wire routing helps limit the effects of noise due to electromagnetic interference (EMI). Run the ground connection from the ground screw to the grounding surface prior to connecting devices.

## ATTENTION

This product is intended to be mounted to a well-grounded mounting surface such as a metal panel.


SG: The Shielded Ground (sometimes called Protected Ground) contact is the left most contact of the 3-pin power terminal block connector when viewed from the angle shown here. Connect the SG wire to an appropriate grounded metal surface.

## Connecting to the Network

Connect one end of the Ethernet cable to the NPort 5200's 10/100M Ethernet port and the other end of the cable to the Ethernet network. If the cable is properly connected, the NPort 5200 will indicate a valid connection to the Ethernet in the following ways:

- The Ethernet LED maintains a solid green color when connected to a 100 Mbps Ethernet network.
- The Ethernet LED maintains a solid orange color when connected to a 10 Mbps Ethernet network.
- The Ethernet LED will flash when Ethernet packets are being transmitted or received.


## Connecting to a Serial Device

Connect the serial data cable between the NPort 5200 and the serial device. Serial data cables are optional accessories for NPort 5210. Refer to Chapter 1 under Optional Accessories for information about the RJ 45-to-DB25 and RJ45-to-DB9 cables.

## LED I ndicators

The top panels of all the NPort 5200 device servers have four LED indicators, as described in the following table.

| LED Name | LED Color | LED Function |
| :---: | :---: | :---: |
| Ready | red | Steady on: Power is on and NPort 5200 is booting up. <br> Blinking: Indicates an IP conflict, or DHCP or BOOTP server did not respond properly. |
|  | green | Steady on: Power is on and NPort 5200 is functioning normally. <br> Blinking: The device server has been located by Administrator's Location function. |
|  | off | Power is off, or power error condition exists. |
| Ethernet | orange | 10 Mbps Ethernet connection. |
|  | green | 100 Mbps Ethernet connection. |
|  | off | Ethernet cable is disconnected, or has a short. |
| P1, P2 | orange | Serial port is receiving data. |
|  | green | Serial port is transmitting data. |
|  | off | No data is being transmitted or received through the serial port. |

## 3

## I nitial I P Address Configuration

When setting up your NPort 5200 for the first time, the first thing you should do is configure the IP address. This chapter introduces the methods that can be used to configure the device server's IP address. Select one of the initial IP Address configuration methods to configure the NPort 5200's IP Address. For more details about network settings, see the Network Settings section from Chapter 5, Web Console Configuration.

The following topics are covered in this chapter:

- Initializing the NPort 5200's IP Address
- Factory Default IP Address

ㅁ NPort Administration Suite
$\square$ ARP
T Telnet Console
ㅁ Serial Console (19200, n, 8, 1)

## I nitializing the NPort 5200's I P Address

1. Determine whether your NPort 5200 needs to use a Static IP or Dynamic IP (either DHCP or BOOTP application).
2. If the NPort $\mathbf{5 2 0 0}$ is used in a Static IP environment, you can use NPort 5200 Administration Suite, Web Console, Telnet Console or Serial Console to configure the new IP address.
3. If the NPort 5200 is used in a Dynamic IP environment, you can use NPort 5200 Administration suite, Web Console, Telnet Console, or Serial Console to configure the NPort 5200 to get an IP address dynamically with DHCP, DHCP/BOOTP, or BOOTP.

## ATTENTI ON

Consult your network administrator to learn how to reserve a fixed IP address for your NPort 5200 in the MAC-IP mapping table when using a DHCP Server or BOOTP Server. For most applications, you should assign a fixed IP address to your NPort 5200.

## Factory Default IP Address

NPort 5200 device servers are configured with the following default private IP address:

> Default I P address: 192.168.127.254
(IP addresses of the form 192.168.xxx.xxx are referred to as private IP addresses, since it is not possible to access a device configured with a private IP address directly from a public network. For example, you would not be able to ping such a device from an outside Internet connection. NPort 5200 applications that require sending data over a public network, such as the Internet, require setting up the server with a valid public IP address, which can be leased from a local ISP.)

## NPort Administration Suite

NPort Administration Suite consists of useful utility programs that are used to configure and manage your NPort 5200 device server.

See Chapter 5 for details on how to install NPort Administration Suite, and how to use this suite of useful utilities to set up IP addresses and configure your NPort $\mathbf{5 2 0 0}$ Series serial device servers.

## ARP

You can use the ARP (Address Resolution Protocol) command to set up an IP address for your NPort 5200. The ARP command tells your computer to associate the NPort 5200's MAC address with the intended IP address. You must then use Telnet to access the NPort 5200, at which point the device server's IP address will be reconfigured.

## ATTENTI ON

In order to use this setup method, both your computer and the NPort 5200 must be connected to the same LAN. Or, you may use a cross-over Ethernet cable to connect the NPort 5200 directly to your computer's Ethernet card. Your NPort 5200 must be configured with the factory default IP address-192.168.127.254before executing the ARP command, as described below.

Take the following steps to use ARP to configure the IP address:

1. Obtain a valid IP address for your NPort 5200 from your network administrator.
2. Obtain the NPort 5200's MAC address from the label on its bottom panel.
3. Execute the 'arp -s' command from your computer's MS-DOS prompt by typing:
arp -s 192.168.200.100 00-90-E8-xx-xx-xx

This is where 192.168.200.100 is the new IP address and 00-90-E8-xx-xx-xx is the MAC address for your NPort 5200. (Be sure to use the actual IP address and MAC address for your NPort 5200.)
4. Next, execute a special Telnet command by typing:

## telnet 192.168.200.100 6000

After issuing this command, a Connect failed message will appear, as shown here. After the NPort 5200 reboots, its IP address will be updated to the new address, and you can reconnect using either Telnet, Web, or Administrator to check that the update was successful.

## Connect failed

Could not open a connection to 192.168.200.100


## Telnet Console

Depending on how your computer and network are configured, you may find it convenient to use network access to set up your NPort 5200's IP address. This can be done using the Telnet.

1. From the Windows desktop, click on Start and then select Run.
2. Type telnet 192.168.127.254 (use the correct IP address if different from the default) in the Open text input box, and then click on OK.

3. When the Telnet window opens, if you are prompted to input the Console password, input the password and then press Enter.
Note that this page will only appear if the NPort 5200 is password protected.

4. Type $\mathbf{2}$ to select Network settings, and then press Enter.

5. Type $\mathbf{1}$ to select IP address and then press Enter.

6. Use the Backspace key to erase the current IP address, type in the new IP address, and then press Enter.
```
<< Main Menu->Network settings >>
    (1) IP address
    (2) Netmask
    (3) Gateway
    (4) IP configuration
    (5) DNS seruer 1
    (6) DNS seruer 2
    (7) SNMP
    (8) SNMP community name
    (9) SNMP contact
    (a) SNMP location
    (b) Auto IP report to IP
    (c) Auto IP report to TCP por*t
    (d) Auto IP report period
    (u) Uiew settings
    (m) Back to main menu
    <q> Quit
Key in your selection: 1
IP address: 192.168.127.253
```

7. Press any key to continue.
```
<< Main Menu->Network settings >>
    (1) IP address
    (2) Netmask
    (3) Gatevay
    (4) IP configuration
    (5) DNS server 1
    (6) DNS server* 2
    (7) SNMP
    (8) SNMP community name
    (9) SNMP contact
    (a) SNMP location
    (b) Auto IP report to IP
    (c) Auto IP report to TCP port
    (d) Auto IP report period
    (u) Uiew settings
    (m) Back to main menu
    (q) Quit
Key in your selection: 1
IP address: 192.168.127.253
Set IP address success
Press any key to continue.
```

8. Type $\mathbf{m}$ and then press Enter to return to the main menu.
```
<< Main Menu->Network settings >>
    (1) IP address
    (2) Netmask
    (3) Gateway
    (4) IP configuration
    (5) DNS seruer 1
    (6) DNS seruer 2
    (7) SNMP
    (8) SNMP community name
    (9) SNMP contact
    (a) SNMP location
    (b) Auto IP report to IP
    (c) Auto IP report to TGP port
    (d) Auto IP report period
    (u) Uiew settings
    (m) Back to main menu
    (c) Quit
Key in your selection: m-
```

9. Type s and then press Enter to Save/ Restart the system.
```
Main Menu >>
    (1) Basic settings
    (2) Network settings
    (3) Serial settings
    (4) Operating settings
    (5) Accessible IP settings
    (6) Auto warning settings
    (7) Monitor
    <8) Ping
    (9) Change password
    (a) Load factory default
    (u) Uiew settings
    (s) Saue/Restart
    (q) Quit
```

Key in your selection: s.
10. Type $\mathbf{y}$ and then press Enter to save the new IP address and restart the NPort 5200.

```
Ready to restart
    (y) Yes
    (n) No
Key in your selection: y/
```


## Serial Console (19200, n, 8, 1)

You may use the RS-232 console port to set up the IP address for NPort 5200. We suggest using PComm Terminal Emulator, which is available free of charge as part of the PComm Lite program suite (found on the Software CD that comes with the product), to carry out the installation procedure, although other similar utilities may also be used.

## ATTENTION

The Serial Console can only be accessed by NPort 5200's RS-232 ports Port 1 for NPort 5210 and NPort 5230. Since NPort 5232 and NPort 5232 do not have an RS-232 interface, the Serial Console program cannot be used to configure NPort 5232/52321's IP address.

Before you use the serial console to configure the NPort 5200, turn off the power and connect the serial cable from NPort 5200 to your computer's serial port.

1. Connect NPort 5200's serial port 1 directly to your computer's male RS-232 serial port.
2. From the Windows desktop, click on Start $\rightarrow$ Programs $\rightarrow$ PComm Lite $\rightarrow$ Terminal Emulator.
3. When the PComm Terminal Emulator window opens, first click on the Port Manager menu item and select Open, or simply click on the Open icon.

4. The Property window opens automatically. From the Communication Parameter page, select the appropriate COM port for the connection, COM1 in this example, and $\mathbf{1 9 2 0 0}$ for Baud Rate, $\mathbf{8}$ for Data Bits, None for Parity, and 1 for Stop Bits.
5. From the Property window's Terminal page, select ANSI or VT100 for Terminal Type and then click OK. If you select Dumb Terminal as the terminal type, some of the console functions-especially the "Monitor" function-may not work properly.

6. Press the " " " key continuously and then power on the NPort 5200.

7. NPort 5200 will switch automatically from data mode to console mode as it receives a continuous "` "string.
8. Input the password when prompted. Note that this page will only appear when the NPort 5200 has been set up for password protection.

9. Start configuring the IP address under Network Settings. Refer to step 4 in the Telnet Console section for the rest of the IP settings.
[ [JOM4,19200,None,8,1,Dumb Terminal


## Choosing the Proper Operation Mode

In this chapter, we describe the various NPort 5200 operation modes. The options include "Driver Mode," which uses a driver installed on the host computer, and operation modes that rely on TCP/IP socket programming concepts. After reading this chapter, choose the operation mode most suitable for your application, and then refer to Chapter 5 for detailed instructions on how to configure the operation mode's parameters.

The following topics are covered in this chapter:

- Overview
$\square$ Real COM Mode
$\square$ TCP Server Mode
$\square$ TCP Client Mode
- UDP Mode

ㅁ Pair Connection Mode

- Reverse Telnet Mode
$\square$ Disabled Mode


## Overview

NPort 5200 serial device servers network-enable traditional RS-232/422/485 devices. A serial device server is a tiny computer equipped with a CPU, real-time OS, and TCP/IP protocols that can bi-directionally transform data between the serial and Ethernet formats. By incorporating serial device servers in your application, you will be able to access, manage, and configure remote facilities and equipment over the Internet from anywhere in the world.

Traditional SCADA and data collection systems rely on serial ports (RS-232/422/485) to collect data from various kinds of instruments. Since NPort 5200 Serial Device Servers network-enable instruments equipped with an RS-232/422/485 communication port, your SCADA and data collection system will be able to access all instruments connected to a standard TCP/IP network, regardless of whether the devices are used locally or at a remote site.

The NPort 5200 is an external IP-based network device that allows you to expand the number of serial ports for a host computer on demand. As long as your host computer supports the TCP/IP protocol, you won't be limited by the host computer's bus limitation (such as ISA or PCl ), or lack of drivers for various operating systems.

In addition to providing socket access, the NPort 5200 also comes with a Real COM/TTY driver that transmits all serial signals intact. This means that you can continue using your existing COM/TTY-based software, without needing to invest in additional software.

Three different Socket Modes are available: TCP Server, TCP Client, and UDP Server/Client. The main difference between the TCP and UDP protocols is that TCP guarantees delivery of data by requiring the recipient to send an acknowledgement for every data packet received. UDP does not require this type of verification, making it possible to offer speedier delivery. UDP also allows unicast transmission to on IP, or multicast transmission to groups of IP addresses.

## Real COM Mode

The NPort 5200 comes equipped with COM drivers that work with Windows 95/98/ME/NT/2000/XP systems, and also TTY drivers for Linux systems. The driver establishes a transparent connection between host and serial device by mapping the IP: Port of the NPort 5200's serial port to a local COM/TTY port on the host computer. Real COM Mode also supports up to 4 simultaneous connections, so that multiple hosts can collect data from the same serial device at the same time.


## ATTENTION

The driver used for Real COM Mode is bundled with NPort Administrator. The driver is installed on your computer automatically when you install NPort 5200 Administration Suite.

RS-232/422/485 serial communications software that was written for pure serial communications applications. The driver intercepts data sent to the host's COM port, packs it into a TCP/IP packet, and then redirects it through the host's Ethernet card. At the other end of the connection, the NPort 5200 accepts the Ethernet frame, unpacks the TCP/IP packet, and then sends it transparently to the appropriate serial device attached to one of the NPort 5200's serial ports.

## ATTENTI ON

Real COM Mode allows several hosts to have access control to the same NPort 5200. The driver that comes with your NPort 5200 controls host access to attached serial devices by checking the host's IP address. Refer to the Accessible IP Settings section of Chapter 5 for more details.

## TCP Server Mode

In TCP Server Mode, NPort 5200 is configured with a unique IP: Port combination on a TCP/IP network. In this case, NPort 5200 waits passively to be contacted by the host computer. After the host computer establishes a connection with the serial device, it can then proceed with data transmission. TCP Server mode also supports up to 4 simultaneous connections, so that multiple hosts can collect data from the same serial device-at the same time.

As illustrated in the figure, data transmission proceeds as follows:

1. The host requests a connection from the NPort 5200 configured for TCP Server Mode.
2. Once the connection is established, data can be transmitted in both directions-from the host to the NPort 5200, and from the NPort 5200 to the host.

## TCP Client Mode

In TCP Client Mode, the NPort 5200 can actively establish a TCP connection with a pre-determined host computer when serial data arrives.
After the data has been transferred, the NPort 5200 can disconnect automatically from the host computer by using the TCP alive check time or I nactivity time settings. Refer to Chapter 5 for detailed configuration instructions.

As illustrated in the figure, data transmission proceeds as follows:

1. The NPort 5200 configured for TCP Client Mode requests a connection from the host.
2. Once the connection is established, data can be transmitted in both directions-from the host to the NPort 5200, and from the NPort 5200 to the host.


## UDP Mode

Compared to TCP communication, UDP is faster and more efficient. In UDP mode, you can unicast or multicast data from the serial device to one or multiple host computers, and the serial device can also receive data from one or multiple host computers, making this mode ideal for message display applications.


## Pair Connection Mode

Pair Connection Mode employs two NPort 5200 in tandem, and can be used to remove the 15 -meter distance limitation imposed by the RS-232 interface. One NPort 5200 is connected from its RS-232 port to the COM port of a PC or other type of computer, such as hand-held PDAs that have a serial port, and the serial device is connected to the RS-232 port of the other NPort 5200. The two NPort 5200 are then connected to each other with a cross-over Ethernet cable, both are connected to the same LAN, or in a more advanced setup, they communicate with each other over a WAN (i.e., through one or more routers). Pair Connection Mode transparently transfers both data and modem control signals (although it cannot transmit the DCD signal) between the two NPorts.

## Reverse Telnet Mode



Console management is commonly used upon Console/AUX or COM port of routers, switches, and UPS. Reverse telnet works the same as RAW mode that they only listen to one specific TCP port after booting up, and wait for the host on the network to initiate the connection. The difference is that the RAW mode does not provide conversion function of telnet protocol. If the connected devices need to use CR/LF conversion function when controlling, then users have to choose Reverse telnet mode.

## Disabled Mode

When Operation mode is set to Disabled, that particular port will be disabled. Check the "Apply the above settings to all serial ports" to apply this setting to the other port.

## Web Console Configuration

The Web Console is the most user-friendly method available to configure NPort 5200. In this chapter, we introduce the Web Console function groups and function definitions.

The following topics are covered in this chapter:

- Opening Your Browser
$\square$ Basic Settings
$\square$ Network Settings
- Serial Settings
$\square$ Operating Settings
> Real COM Mode
> TCP Server Mode
> TCP Client Mode
> UDP Mode
> Pair Connection Mode
> Reverse Telnet Mode
> Disabled Mode
- Accessible IP Settings
- Auto Warning Settings
> Auto warning: Email and SNMP trap
> Event Type
- Monitor
> Monitor Line
> Monitor Async
> Monitor Async-Settings
- Change Password
- Load Factory Default


## Opening Your Browser

1. Open your browser with the cookie function enabled. (To enable your browser for cookies, right click on your desktop Internet Explorer icon, select Properties, click on the Security tab, and then select the three Enable options as shown in the figure below.)

2. Type 192.168.127.254 in the Address input box (use the correct IP address if different from the default), and then press Enter.
3. Input the password if prompted. The password is transmitted with MD5 encryption over the Ethernet. Note that you will not be prompted to enter the password if the NPort 5200 is not password protected.

P2 Input Password - Microsoft Internet Explor er

|Address 2 感 http://192.168.127.254/

Input password

Password


## Submit

## ATTENTI ON

If you use web browsers other than Explorer, remember to Enable the functions to "allow cookies that are stored on your computer" or "allow per-session cookies."

Note that NPort 5200 only uses cookies for "password" transmission.

## ATTENTI ON

Refer to Chapter 3, Initial IP Address Configuration, to see how to configure the IP address. Examples shown in this chapter use the Factory Default IP address (192.168.127.254).
4. The NPort 5200 homepage will open next. On this page, you can see a brief description of the Web Console's nine function groups.


## ATTENTION

If you can't remember the password, the ONLY way to start configuring the NPort 5200 is to load factory defaults by using the Reset button located near the NPort 5200's RJ 45 Ethernet port.

Remember to use NPort Administrator to export the configuration file when you have finished the configuration. After using the Reset button to load factory defaults, your configuration can be easily reloaded into the NPort 5200 by using the NPort Administrator Import function. Refer to Chapter 6 for more details about using the Export and Import functions.


## ATTENTI ON

If your NPort 5200 application requires using password protection, you must enable the cookie function in your browser. If the cookie function is disabled, you will not be allowed to enter the Web Console Screen.

## Basic Settings

| MOS< | WWW.moxa.com |  |
| :---: | :---: | :---: |
| - Main Menu | Basic Setting |  |
| O. Basic Settings | Server name | NP5210_3 |
| I Network Settings | Time |  |
| ${ }^{\text {¢ }}$ - Serial Settings | Time zone | (GMT)Greenwich Mean Time: Dublin, Edinburgh, Lisbon, London - |
| $\begin{aligned} & \text { Operating Settings } \\ & \text { Accessible IP Settings } \end{aligned}$ | Local time | $\sqrt{2005}, \sqrt{9}, \sqrt{19} \sqrt{5}: \sqrt{14}: \sqrt{2}$ |
| + $\square$ Auto Warning Settings |  | Modify |
| + $\square$ Monitor | Time server |  |
| - Change Password | Settings |  |
| - Load Factory Default | Web console | - Enable $\bigcirc$ Disable |
| $\square$ Save/Restart | Telnet console | - Enable C Disable |
|  | Reset button protect | - ${ }^{\text {No }} \mathrm{C}_{\text {Yes }}$ |
|  |  | Submit |

## Server name

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 39 characters | [model name]_[Serial No.] | Optional |

This option is useful for specifying the location or application of different NPort 5200s.

## Time

NPort 5200 has a built-in Real-Time Clock for time calibration functions. Real-time information can be added to Auto warning "Email" or "SNMP Trap" messages.

## ATTENTION

First time users should select the time zone first. The Console will display the "real time" according to the time zone compared to GMT.
If you would like to modify the real time clock, select "Local time." NPort 5200's firmware will modify the GMT time according to the Time Zone.

Time zone

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| User selectable time <br> zone | GMT (Greenwich Mean Time) | Required |

Local time

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| User adjustable time GMT (Greenwich Mean Time) Required <br> $(1900 / 1 / 1$ to   |  |  |

Click on the Modify button to open the Modify time settings window to modify the time.


## Time server

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| IP Address or Domain | blank | Optional |
| Name |  |  |
| (E.g., 192.168.1.1, |  |  |
| time.stdtime.gov.tw, <br> or time.nist.gov) |  |  |

The NPort 5200 uses SNTP (RFC-1769) for auto time calibration.
Input the correct "Time server" IP address or domain name. Once NPort 5200 is configured with the correct Time server address, NPort 5200 will request time information from the "Time server" every 10 minutes.

## Web/ Telnet Console

The "Disable" option for "Web Console" and "Telnet Console" is included for security reasons. In some cases, you may want to disable one or both of these console utilities as an extra precaution to prevent unauthorized users from accessing your NPort 5200. The factory default for both Web console and Telnet console is Enable.

## Web console

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Enable or Disable | Enable | Required |

Telnet console

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Enable or Disable | Enable | Required |

## ATTENTION

If you disable both the "Web console" and "Telnet console," you can still use NPort Administrator to configure NPort 5200 either locally or remotely over the network. Refer to Chapter 6 for more details.

## Reset button protect

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| No or Yes | No | Required |

NOTE: Select the Yes option to allow limited use of the Reset Button. In this case, the Reset Button can be used for only 60 seconds. I.e., 60 sec . after booting up, the Reset Button will be disabled automatically.

## Network Settings



You must assign a valid IP address to the NPort 5200 before it will work in your network environment. Your network system administrator should provide you with an IP address and related settings for your network. The IP address must be unique within the network (otherwise, the NPort 5200 will not have a valid connection to the network). First time users can refer to Chapter 3, I nitial IP Address Configuration, for more information.

You can choose from four possible IP Configuration modes-Static, DHCP, DHCP/ BOOTP, and BOOTPlocated under the web console screen's IP configuration drop-down box.

| Method | Function Definition |
| :--- | :--- |
| Static | User defined IP address, Netmask, Gateway. |
| DHCP | DHCP Server assigned IP address, Netmask, Gateway, DNS, and Time Server |
| DHCP/BOOTP | DHCP Server assigned IP address, Netmask, Gateway, DNS, and Time Server, or BOOTP <br> Server assigned IP address (if the DHCP Server does not respond) |
| BOOTP | BOOTP Server assigns IP address |

## IP Address

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| E.g., 192.168.1.1 (IP | 192.168 .127 .254 | Required |
| addresses of the form |  |  |
| x.x.x.0 and x.x.x.255 |  |  |
| are invalid.) |  |  |

An IP address is a number assigned to a network device (such as a computer) as a permanent address on the network. Computers use the IP address to identify and talk to each other over the network. Choose a proper IP address that is unique and valid in your network environment.

Netmask

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| E.g., 255.255 .255 .0 | 255.255 .255 .0 | Required |

A netmask identifies a local area network. When a packet is sent out over the network, the NPort 5200 will use the subnet mask to check whether the destination TCP/IP host specified in the packet is on the local network
segment. If the address is on the same network segment as the NPort 5200, a connection is established directly from the NPort 5200. Otherwise, an attempt is made to establish a connection through the given default gateway.

Gateway

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| E.g., 192.168.1.1 | blank | Optional |

The gateway IP address identifies a network gateway that acts as an entrance to another network. Usually, the computers that control traffic within the network or at the local Internet service provider are gateway nodes. The NPort 5200 needs to know the IP address of the default gateway computer in order to communicate with the hosts outside the local network environment. For correct gateway IP address information, consult your network administrator.

## IP Configuration

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Static, DHCP, <br> DHCP/BOOTP, BOOTP | Static | Required |

## ATTENTION

In Dynamic IP environments, the firmware will retry 3 times every 30 seconds until network settings are assigned by the DHCP or BOOTP server. The Timeout for each try increases from 1 second, to 3 seconds, to 5 seconds.
If the DHCP/BOOTP Server is unavailable, the firmware will use the default IP address (192.168.127.254), Netmask, and Gateway for IP settings.

DNS server 1 / DNS server 2

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| E.g., 192.168.1.1 | blank | Optional |
| (IP addresses of the |  |  |
| form x.x.x.0 and |  |  |
| x.x.x.255 are invalid <br> DNS server settings.) |  |  |

When the user wants to visit a particular website, the computer requests the website's IP address from a Domain Name System (DNS) server, and then the computer uses that IP address to connect to the web server. DNS is used to identify Internet domain names, and to translate domain names into IP addresses. A domain name is an alphanumeric name, such as moxa.com. A DNS server is a host that translates this kind of text-based domain name into the numeric IP address used to establish a TCP/IP connection.

In order to use NPort 5200's DNS feature, you need to configure the DNS server. Doing so allows NPort 5200 to use a host's domain name to access the host. NPort 5200 provides DNS server 1 and DNS server 2 configuration items to configure the IP address of the DNS server. DNS Server 2 is used when DNS sever 1 is unavailable.

NPort 5200 plays the role of DNS client, in the sense that the NPort 5200 will actively query the DNS server for the IP address associated with a particular domain name. NPort 5200 functions that support domain name are
Time server, Destination IP Address in TCP Client mode, Mail Server, SNMP trap server, and Auto report to IP.

## SNMP Settings

## Community Name

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 39 characters | public | Optional |
| (E.g., Support, |  |  |
| $886-89191230 \# 300$ ) |  |  |

A community name is a plain-text password mechanism that is used to authenticate queries weakly to agents of managed network devices.

Contact

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 39 characters | blank | Optional |
| (E.g., Support, |  |  |
| $886-89191230$ \#300) |  |  |

The SNMP contact information usually includes an emergency contact name and telephone or pager number.
Location

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 39 characters | blank | Optional |
| (E.g., Floor 1, office 2) |  |  |

Specify the location of SNMP agents, such as NPort 5200. This string is usually set to the street address where the NPort 5200 is physically located.

## I P Address Report

When NPort 5200 Series products are used in a dynamic IP environment, users must spend more time with IP management tasks. For example, if NPort 5200 is set up as a server (TCP or UDP), then the host, which acts as a client, must know the IP address of the server. If the DHCP server assigns a new IP address to NPort 5200, the host must have some way of determining NPort 5200's new IP address.

NPort 5200 device servers help out by reporting their IP address periodically to the IP location server, in case the dynamic IP has changed. The parameters shown below are used to configure the Auto IP report function. There are two ways to develop an "Auto IP report Server" to receive NPort 5200's Auto IP report.

1. Use Device Server Administrator's IP Address Report function.
2. "Auto IP report protocol," which can receive the Auto IP report automatically on a regular basis, is also available to help you develop your own software. Refer to Appendix E for the "Auto IP report protocol."

Auto report to IP

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| E.g., 192.168.1.1 or | blank | Optional |
| URL |  |  |
| (IP addresses of the |  |  |
| form x.x.x.0 and |  |  |
| x.x.x.255 are invalid.) |  |  |

Reports generated by the Auto report function will be sent to this IP address automatically.
Auto report to UDP port

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| E.g., 4002 | 4002 | Optional |

## Auto report period

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Time interval (in <br> seconds) | 10 | Optional |

## Serial Settings

Click on Serial Settings, located under Main Menu, to display serial port settings for ports 1 and 2.


To modify serial settings for a particular port, click on either Port 1 or Port 2 under Serial Settings, located under Main Menu on the left side of the browser window.

| M区ை-n | www.moxa.com |  |
| :---: | :---: | :---: |
| Main MenuOverviewBasic SettingsNetwork SettingsSerial SettingsPort 1Port 2Operating SettingsAccessible IP Settings+ Auto Warning SettingsMonitorChange PasswordLoad Factory DefaultSave/Restart | Serial Settings |  |
|  |  | Port=01 |
|  | Port alias |  |
|  |  | Serial Param |
|  | Baud rate | 115200 |
|  | Data bits | 8. |
|  | Stop bits | 1 - |
|  | Parity | None $\triangle$ |
|  | Flow control | RTS/CTS - |
|  | FIFO | $\bigcirc$ Enable ${ }^{\text {d }}$ Disable |
|  | Interface | RS-232 Only |
|  | $\Gamma$ Apply the | erial ports |
|  |  | Submit |

## Port alias

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 15 characters <br> (E.g., PLC-No.1) | blank | Optional |

"Port alias" is included to allow easy identification of the serial devices that are connected to NPort 5200's serial port.

## Serial Parameters



## ATTENTION

Check your serial device's user's manual to determine the proper settings for the device's serial communication parameters. Use these settings to configure NPort 5200's serial parameters.

## Baud rate

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 110 bps to 230.4 Kbps | 115.2 Kbps | Required |

Data bits

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| $5,6,7,8$ | 8 | Required |

When the user sets Data bits to 5 bits, the Stop bits setting will automatically change to 1.5 bits.

## Stop bits

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1,2 | 1 | Required |

Stop bits will be set to 1.5 when Data bits is set to 5 bits.

## Parity

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| None, Even, Odd, <br> Space, Mark | None | Required |

## Flow control

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| None, RTS/CTS, <br> DTR/DSR, Xon/Xoff | RTS/CTS | Required |

FIFO

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Enable, Disable | Enable | Required |

NPort 5200's serial ports provide a 16-byte FIFO both in the Tx and Rx directions. To prevent data loss during communication, disable the FIFO setting when your serial device does not have a FIFO.

## I nterface

| Model | Port | Settings | Factory Default | Necessity |
| :--- | :--- | :--- | :--- | :--- |
| NPort 5210 | 1 and 2 | RS-232 | RS-232 | N/A |
| NPort 5230 | 1 | RS-232 | RS-232 | Required |
|  | 2 | RS-422, <br> 2-wire RS-485, <br> 4-wire RS-485 | 4-wire RS-485 | Required |
|  | 1 and 2 | RS-422, <br> 2-wire RS-485, <br> 4-wire RS-485 | 4-wire RS-485 | R |

## Operating Settings

| WWW.moxa.com |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Operating Settings |  |  |  |  |  |  |
|  | Operating Settings |  |  |  |  |  |  |
|  | Port | Operating mode | Packing length | Delimiter 1 | Delimiter 2 | Delimiter process | Force transmit |
|  |  |  | 0 | 0 (Disable) | 0 (Disable) | Do Nothing | 0 |
|  | 1 | Real COM Mode | TCP alive c Max conne | ck time: 7 |  |  |  |
|  |  |  |  | 0 (Disable) | 0 (Disable) | Do Nothing | 0 |
|  | 2 | Real COM Mode | TCP alive c Max conne | ck time: 7 |  |  |  |

Click on Operating Settings, located under Main Menu, to display the operating settings for both of NPort 5200's serial ports.

## Real COM Mode



## TCP alive check time

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 99 min | 7 min | Required |

0 min: TCP connection is not closed due to an idle TCP connection.
1 to 99 min: NPort 5200 automatically closes the TCP connection if there is no TCP activity for the given time. After the connection is closed, the NPort 5200 starts listening for another Real COM driver connection from another host.

Max connection

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| $1,2,3,4$ | 1 | Required |

Max connection is usually used when the user needs to receive data from different hosts simultaneously. The factory default is 1 . In this case, only one specific host can access this port of the NPort 5200, and the Real COM driver on that host will have full control over the port.

## Max. Connection 1:

Allows only 1 host's Real COM driver to open the specific NPort 5200 serial port.

## Max Connection 2 to 4:

Allows 2 to 4 host's Real COM drivers to open the specific NPort 5200 serial port, at the same time. When multiple hosts' Real COM drivers open the serial port at the same time, the COM driver only provides a pure data tunnel without control ability. That is, this serial port parameter will use the firmware settings, instead of depending on your application program (AP).

Application software that is based on the COM driver will receive a driver response of "success" when the software uses any of the Win32 API functions. The firmware will only send the data back to the driver on the host.

Data will be sent first-in-first-out when data comes into the NPort 5200 from the Ethernet interface.

## ATTENTION

When Max connection is set to 2,3 , or 4 , this means that the NPort 5200 will be using a "multi connection application" (i.e., 2, 3, or 4 hosts are allowed access to the port at the same time). When using a multi connection application, the NPort 5200 will use the serial communication parameters set in the console. All of the hosts connected to that port must use the same serial settings. If one of the hosts opens the COM port with parameters that are different from the NPort 5200's console setting, data communication may not work properly.

I gnore jammed IP

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| No or Yes | No | Required |

For previous versions of NPort 5200, when Max connections $>1$, and the serial device is transmitting data, if any one of the connected hosts was not responding NPort 5200 would wait until the data had been transmitted successfully before transmitting the second group of data to all hosts. For the current version of NPort 5200, if you select Yes for "I gnore jammed IP," the host that is not responding will be ignored, but the data will still be transmitted to the other hosts.

Allow driver control

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| No or Yes | No | Required |

If "max connection" is greater than 1, NPort will ignore driver control commands from all connected hosts. However, if you set "Allow driver control" to YES, control commands will be accepted. Note that since NPort 5200 may get configuration changes from multiple hosts, the most recent command received will take precedence.

## Packing length

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 1024 | 0 | Required |

Default $=0$, The Delimiter Process will be followed, regardless of the length of the data packet. If the data length (in bytes) matches the configured value, the data will be forced out. The data length can be configured for 0 to 1024 bytes. Set to 0 if you do not need to limit the length.

## Delimiter 1

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 00 to FF (hex) | 0 | Required |

Delimiter 2

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 00 to FF (hex) | 0 | Required |

Once the NPort 5200 receives both delimiters through its serial port, it immediately packs all data currently in its buffer and sends it to the NPort 5200's Ethernet port.

## ATTENTION

Delimiter 2 is optional. If left blank, then Delimiter 1 alone trips clearing of the buffer. If the size of the serial data received is greater than 1 KB , the NPort 5200 will automatically pack the data and send it to the Ethernet. However, to use the delimiter function, you must at least enable Delimiter 1. If Delimiter 1 is left blank and Delimiter 2 is enabled, the delimiter function will not work properly.

Delimiter process

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Do nothing, Delimiter + | Do Nothing | Required |
| 1, Delimiter +2 , Strip |  |  |
| Delimiter |  |  |

When [Delimiter +1 ] or [Delimiter +2 ] is selected, the data will be transmitted when an additional byte (for Delimiter +1 ), or an additional 2 bytes (for Delimiter +2 ) of data is received after receiving the Delimiter.

When [Strip Delimiter] is selected, when the Delimiter is received, the Delimiter is deleted (i.e., stripped), and the remaining data is transmitted.

When [Do nothing] is selected, the data will be transmitted when the Delimiter is received.

## Force transmit

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 65535 ms | 0 ms | Required |

0 : Disable the force transmit timeout.
1 to 65535: Forces the NPort 5200's TCP/IP protocol software to try to pack serial data received during the specified time into the same data frame.

This parameter defines the time interval during which NPort 5200 fetches the serial data from its internal buffer. If data is incoming through the serial port, NPort 5200 stores the data in the internal buffer. NPort 5200 transmits data stored in the buffer via TCP/IP, but only if the internal buffer is full or if the Force transmit time interval reaches the time specified under Force transmit timeout.

The optimal Force transmit timeout depends on your application, but it must be at least larger than one character interval within the specified baud rate. For example, assume that the serial port is set to 1200 bps , 8 data bits, 1 stop bit, and no parity. In this case, the total number of bits needed to send a character is 10 bits, and the time required to transfer one character is
$(10($ bits $) / 1200(\mathrm{bits} / \mathrm{s})) * 1000(\mathrm{~ms} / \mathrm{s})=8.3 \mathrm{~ms}$.
Therefore, you should set Force transmit timeout to be larger than 8.3 ms , so in this case, it must be greater than or equal to 10 ms .

If the user wants to send a series of characters in the same packet, the serial device attached to NPort 5200 should send that series of characters during a time interval less than the Force transmit timeout for NPort 5200, and the total length of data must be less than or equal to NPort 5200's internal buffer size. The serial communication buffer size for NPort 5200 is 1 KB per port.

## TCP Server Mode



## TCP alive check time

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 99 min | 7 min | Optional |

0 min : TCP connection is not closed due to an idle TCP connection.
1 to 99 min : The NPort 5200 automatically closes the TCP connection if there is no TCP activity for the given time. After the connection is closed, the NPort 5200 starts listening for another host's TCP connection.

I nactivity time

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 65535 ms | 0 ms | Optional |

0 ms : TCP connection is not closed due to an idle serial line.
1-65535 ms: The NPort 5200 automatically closes the TCP connection if there is no serial data activity for the given time. After the connection is closed, the NPort 5200 starts listening for another host's TCP connection.

This parameter defines the maintenance status as Closed or Listen for the TCP connection. The connection is closed if data is not incoming or outgoing through the serial port during the specific Inactivity time.

If the Inactivity time is set to 0 , the current TCP connection is kept active until a connection close request is received. Although Inactivity time is disabled, the NPort 5200 will check the connection status between the NPort 5200 and remote host by sending "keep alive" packets periodically. If the remote host does not respond to the packet, NPort 5200 assumes that the connection was closed down unintentionally. NPort 5200 will then force the existing TCP connection to close.

## ATTENTI ON

The Inactivity time should at least be larger than Force transmit timeout. To prevent the unintended loss of data due to the session being disconnected, it is highly recommended that this value is set large enough so that the intended data transfer can be completed.

Max Connection

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| $1,2,3,4$ | 1 | Required |

Max Connection is usually used when the user needs to receive data from different hosts simultaneously. The factory default only allows 1 connection at a time.

## Max. Connection 1:

NPort 5200 only allows 1 host to open the TCP connection to the specific serial port.

## Max Connection 2 to 4:

Allows 2 to 4 host's TCP connection request to open this NPort 5200 serial port, at the same time. When multiple hosts establish a TCP connection to the specific serial port at the same time, NPort 5200 will duplicate the serial data and transmit to all of the hosts. Ethernet data is sent on a first-in-first-out basis to the serial port when data comes into NPort 5200 from the Ethernet interface.

I gnore jammed IP

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| No or Yes | No | Required |

For previous versions of NPort 5200, when Max connections > 1, and the serial device is transmitting data, if any one of the connected hosts was not responding NPort 5200 would wait until the data had been transmitted successfully before transmitting the second group of data to all hosts. For the current version of NPort 5200, if you select Yes for "Ignore jammed IP," the host that is not responding will be ignored, but the data will still be transmitted to the other hosts.

Allow driver control

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| No or Yes | No | Required |

If "max connection" is greater than 1, the NPort will ignore driver control commands from all connected hosts. However, if you set "Allow driver control" to YES, control commands will be accepted. Note that since the NPort 5200 may get configuration changes from multiple hosts, the most recent command received will take precedence.

Packing length

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 1024 | 0 | Optional |

Default $=0$, The Delimiter Process will be followed, regardless of the length of the data packet. If the data length (in bytes) matches the configured value, the data will be forced out. The data length can be configured for 0 to 1024 bytes. Set to 0 if you do not need to limit the length.

Delimiter 1

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 00 to FF | blank | Optional |

Delimiter 2

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 00 to FF | blank | Optional |

Once the NPort 5200 receives both delimiters through its serial port, it immediately packs all data currently in its buffer and sends it out the NPort 5200's Ethernet port.

ATTENTION
Delimiter 2 is optional. If left blank, then Delimiter 1 alone trips clearing of the buffer. If the size of the serial data received is greater than 1 KB, the NPort 5200 will automatically pack the data and send it to the Ethernet. However, to use the delimiter function, you must at least enable Delimiter 1. If Delimiter 1 is left blank and Delimiter 2 is enabled, the delimiter function will not work properly.

Delimiter process

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Do nothing <br> Delimiter +1, <br> Delimiter +2 <br> Strip Delimiter | Do Nothing | Optional |

When [Delimiter +1 ] or [Delimiter +2 ] is selected, the data will be transmitted when an additional byte (for Delimiter +1 ), or an additional 2 bytes (for Delimiter +2 ) of data is received after receiving the Delimiter.

When [Strip Delimiter] is selected, when the Delimiter is received, the Delimiter is deleted (i.e., stripped), and the remaining data is transmitted.

When [Do nothing] is selected, the data will be transmitted when the Delimiter is received.
Force transmit

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 65535 ms | 0 ms | Optional |

0 : Disable the force transmit timeout.
1 to 65535: Forces the NPort 5200's TCP/IP protocol software to try to pack serial data received during the specified time into the same data frame.

This parameter defines the time interval during which NPort 5200 fetches the serial data from its internal buffer. If data is incoming through the serial port, NPort 5200 stores the data in the internal buffer. NPort 5200 transmits data stored in the buffer via TCP/IP, but only if the internal buffer is full or if the Force transmit time interval reaches the time specified under Force transmit timeout.

The optimal Force transmit timeout depends on your application, but it must be at least larger than one character interval within the specified baud rate. For example, assume that the serial port is set to 1200 bps, 8 data bits, 1 stop bit, and no for parity. In this case, the total number of bits needed to send a character is 10 bits, and the time required to transfer one character is
$(10($ bits $) / 1200(\mathrm{bits} / \mathrm{s})) * 1000(\mathrm{~ms} / \mathrm{s})=8.3 \mathrm{~ms}$.

Therefore, you should set Force transmit timeout to be larger than 8.3 ms , so in this case, it must be greater than or equal to 10 ms .

If the user wants to send a series of characters in the same packet, the serial device attached to NPort 5200 should send that series of characters during a time interval less than the Force transmit timeout for NPort 5200, and the total length of data must be less than or equal to NPort 5200's internal buffer size. The serial communication buffer size for NPort 5200 is 1 KB per port.

Local TCP port

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 65535 | 4001 | Required |

The "Local TCP port" is the TCP port that NPort 5200 uses to listen to connections, and that other devices must use to contact NPort 5200. To avoid conflicts with commonly used TCP port numbers, the default is set to 4001.

## Command port

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 65535 | 966 | Optional |

The "Command port" is a listen TCP port for IP-Serial Lib commands from the host. In order to prevent a TCP port conflict with other applications, the user can set the Command port to another port if needed. IP-Serial Lib will automatically check the Command Port on NPort 5200 so that the user does not need to configure the program.

## TCP Client Mode



## TCP alive check time

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 99 min | 7 min | Optional |

0 min : TCP connection is not closed due to an idle TCP connection.
1 to 99 min: NPort 5200 closes the TCP connection automatically if there is no TCP activity for the given time.

I nactivity time

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 65535 ms | 0 ms | Optional |

0 ms : TCP connection is not closed due to an idle serial line.
$0-65535 \mathrm{~ms}$ : NPort 5200 closes the TCP connection automatically if there is no serial data activity for the given time.

This parameter defines the maintenance status as Closed or Listen for the TCP connection. The connection is closed if data is not incoming or outgoing through the serial port during the specified Inactivity time.

If the Inactivity time is set to 0 , the current TCP connection is kept active until a connection close request is received. Although Inactivity time is disabled, the NPort 5200 will check the connection status between the NPort 5200 and remote host by sending "keep alive" packets periodically. If the remote host does not respond to the packet, NPort 5200 assumes that the connection was closed down unintentionally. NPort 5200 will then force the existing TCP connection to close.


## ATTENTI ON

The Inactivity time should at least be set larger than that of Force transmit timeout. To prevent the unintended loss of data due to the session being disconnected, it is highly recommended that this value is set large enough so that the intended data transfer is completed.

ATTENTION
Inactivity time is ONLY active when "TCP connect on" is set to "Any character."

I gnore jammed IP

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| No or Yes | No | Optional |

For previous versions of NPort 5200, when Max connections > 1, and the serial device is transmitting data, if any one of the connected hosts was not responding NPort 5200 would wait until the data had been transmitted successfully before transmitting the second group of data to all hosts. For the current version of NPort 5200, if you select Yes for "Ignore jammed IP," the host that is not responding will be ignored, but the data will still be transmitted to the other hosts.

## Packing length

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 1024 | 0 | Optional |

Default $=0$, The Delimiter Process will be followed, regardless of the length of the data packet. If the data length (in bytes) matches the configured value, the data will be forced out. The data length can be configured for 0 to 1024 bytes. Set to 0 if you do not need to limit the length.

Delimiter 1

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 00 to FF (hex) | blank | Optional |

## Delimiter 2

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 00 to FF (hex) | blank | Optional |

Once the NPort 5200 receives both delimiters through its serial port, it immediately packs all data currently in its buffer and sends it to the NPort 5200's Ethernet port.

## ATTENTI ON

Delimiter 2 is optional. If left blank, then Delimiter 1 alone trips clearing of the buffer. If the size of the serial data received is greater than 1 KB , the NPort 5200 will automatically pack the data and send it to the Ethernet. However, to use the delimiter function, you must at least enable Delimiter 1 . If Delimiter 1 is left blank and Delimiter 2 is enabled, the delimiter function will not work properly.

Delimiter process

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Do nothing, Delimiter + <br> 1, Delimiter + 2, Strip <br> Delimiter | Do Nothing | Required |

When [Delimiter +1 ] or [Delimiter +2 ] is selected, the data will be transmitted when an additional byte (for Delimiter +1 ), or an additional 2 bytes (for Delimiter +2 ) of data is received after receiving the Delimiter.

When [Strip Delimiter] is selected, when the Delimiter is received, the Delimiter is deleted (i.e., stripped), and the remaining data is transmitted.

When [Do nothing] is selected, the data will be transmitted when the Delimiter is received.
Force transmit

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 65535 ms | 0 ms | Required |

0 : Disable the force transmit timeout.
1 to 65535: Forces the NPort 5200's TCP/IP protocol software to try to pack serial data received during the specified time into the same data frame.

This parameter defines the time interval during which NPort 5200 fetches the serial data from its internal buffer. If data is incoming through the serial port, NPort 5200 stores the data in the internal buffer. NPort 5200 transmits data stored in the buffer via TCP/IP, but only if the internal buffer is full or if the Force transmit time interval reaches the time specified under Force transmit timeout.

The optimal Force transmit timeout depends on your application, but it must be at least larger than one character interval within the specified baud rate. For example, assume that the serial port is set to 1200 bps, 8 data bits, 1 stop bit, and no parity. In this case, the total number of bits needed to send a character is 10 bits, and the time required to transfer one character is
$(10$ (bits) / $1200($ bits $/ \mathrm{s})) * 1000(\mathrm{~ms} / \mathrm{s})=8.3 \mathrm{~ms}$.
Therefore, you should set Force transmit timeout to be larger than 8.3 ms , so in this case, it must be greater than or equal to 10 ms .

If the user wants to send a series of characters in the same packet, the serial device attached to NPort 5200 should send that series of characters during a time interval less than the Force transmit timeout for NPort 5200, and the total length of data must be less than or equal to NPort 5200's internal buffer size. The serial communication buffer size for NPort 5200 is 1 KB per port.

Destination IP address 1

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| IP address or Domain | blank | Optional |
| Name |  |  |
| (E.g., 192.168.1.1) |  |  |

Allows NPort 5200 to connect actively to the remote host whose IP address is set by this parameter.

Destination IP address 2/ 3/4

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| IP address or Domain | blank | Optional |
| Name |  |  |
| (E.g., 192.168.1.1) |  |  |

Allows the NPort 5200 to connect actively to the remote host whose IP address is set by this parameter.


## ATTENTION

Up to 4 connections can be established between the NPort 5200 and hosts. The connection speed or throughput may be low if one of the four connections is slow, since the 1 slow connection will slow down the other 3 connections.


## ATTENTION

The "Destination IP address" parameter can use both IP address and Domain Name. For some applications, the user may need to send the data actively to the remote destination domain name.

Designated Local Port 1/ 2/ 3/ 4

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| TCP Port No. | 5011 (Port 1) | Required |
|  | 5012 (Port 2) |  |
|  | 5013 (Port 3) |  |
|  | 5014 (Port 4) |  |

## Connection control

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Startup/None, | Startup/None | Required |
| Any Character/None, |  |  |
| Any Character/ |  |  |
| Inactivity Time, |  |  |
| DSR ON/DSR OFF, |  |  |
| DSR ON/None, |  |  |
| DCD ON/DCD OFF, |  |  |
| DCD ON/None |  |  |

The meaning of each of the above settings is given in the table below. In general, both the Connect condition and Disconnect condition are given.

| Connect/ Disconnect | Description |
| :--- | :--- |
| Startup/None <br> (default) | A TCP connection will be established on startup, and will remain active <br> indefinitely. |
| Any Character/None | A TCP connection will be established when any character is received from the <br> serial interface, and will remain active indefinitely. |
| Any Character/ <br> Inactivity Time | A TCP connection will be established when any character is received from the <br> serial interface, and will be disconnected when the Inactivity time out is reached. |
| DSR On/DSR Off | A TCP connection will be established when a DSR "On" signal is received, and will <br> be disconnected when a DSR "Off" signal is received. |
| DSR On/None | A TCP connection will be established when a DSR "On" signal is received, and will <br> remain active indefinitely. |
| DCD On/DCD Off | A TCP connection will be established when a DCD "On" signal is received, and will <br> be disconnected when a DCD "Off" signal is received. |
| DCD On/None | A TCP connection will be established when a DCD "On" signal is received, and will <br> remain active indefinitely. |

## UDP Mode



Packing length

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 1024 | 0 | Required |

Default $=0$, The Delimiter Process will be followed, regardless of the length of the data packet. If the data length (in bytes) matches the configured value, the data will be forced out. The data length can be configured for 0 to 1024 bytes. Set to 0 if you do not need to limit the length.

Delimiter 1

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 00 to FF | blank | Required |

Delimiter 2

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 00 to FF | blank | Required |

Once the NPort 5200 receives both delimiters through its serial port, it immediately packs all data currently in its buffer and sends it out the NPort 5200's Ethernet port.

## ATTENTION

Delimiter 2 is optional. If left blank, then Delimiter 1 alone trips clearing of the buffer. If the size of the serial data received is greater than 1 KB , the NPort 5200 will automatically pack the data and send it to the Ethernet. However, to use the delimiter function, you must at least enable Delimiter 1. If Delimiter 1 is left blank and Delimiter 2 is enabled, the delimiter function will not work properly.

## Delimiter process

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Do nothing <br> Delimiter +1 <br> Delimiter +2 <br> Strip Delimiter | Do Nothing | Optional |

[Delimiter +1 ] or [Delimiter +2 ]: The data will be transmitted when an additional byte (for Delimiter +1 ), or an additional 2 bytes (for Delimiter +2 ) of data is received after receiving the Delimiter.
[Strip Delimiter]: When the Delimiter is received, the Delimiter is deleted (i.e., stripped), and the remaining data is transmitted.
[Do nothing]: The data will be transmitted when the Delimiter is received.

## Force transmit

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 65535 ms | 0 ms | Required |

0 : Disable the force transmit timeout.
1 to 65535: Forces the NPort 5200's TCP/IP protocol software to try to pack serial data received during the specified time into the same data frame.

This parameter defines the time interval during which NPort 5200 fetches the serial data from its internal buffer. If data is incoming through the serial port, NPort 5200 stores the data in the internal buffer. NPort 5200 transmits data stored in the buffer via TCP/IP, but only if the internal buffer is full or if the Force transmit time interval reaches the time specified under Force transmit timeout.

The optimal Force transmit timeout depends on your application, but it must be at least larger than one character interval within the specified baud rate. For example, assume that the serial port is set to 1200 bps, 8 data bits, 1 stop bit, and no parity. In this case, the total number of bits needed to send a character is 10 bits, and the time required to transfer one character is
$(10($ bits $) / 1200($ bits $/ \mathrm{s})) * 1000(\mathrm{~ms} / \mathrm{s})=8.3 \mathrm{~ms}$.
Therefore, you should set Force transmit timeout to be larger than 8.3 ms , so in this case, it must be greater than or equal to 10 ms .

If the user wants to send a series of characters in the same packet, the serial device attached to NPort 5200 should send that series of characters during a time interval less than the Force transmit timeout for NPort 5200, and the total length of data must be less than or equal to NPort 5200's internal buffer size. The serial communication buffer size for NPort 5200 is 1 KB per port.

Destination IP address 1

| Setting | Factory Default | Necessity |  |
| :--- | :--- | :--- | :--- |
| IP address range | Begin: $\quad$ blank | Optional |  |
|  | Begin: 192.168 .1 .1 | End: | blank |
|  | End: 192.168 .1 .10 | Port: | 4001 |

Destination IP address 2/ 3/4

| Setting | Factory Default |  | Necessity |
| :---: | :---: | :---: | :---: |
| IP address range | Begin: | blank | Optional |
| E.g., Begin: 192.168.1.11 | End: | blank |  |
| End: 192.168.1.20 | Port: | 4001 | Required |

## Local listen port

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 65535 | 4001 | Required |

The UDP port that NPort 5200 listens to, and that other devices must use to contact NPort 5200. To avoid conflicts with common UDP ports, the default is set to 4001.

## Pair Connection Mode

Pair Connection Mode employs two NPort 5200 device servers in tandem, and can be used to remove the 15 -meter distance limitation imposed by the RS-232 interface. One NPort 5200 is connected from its RS-232 port to the COM port of a PC or other type of computer, such as hand-held PDAs that have a serial port, and the serial device is connected to the RS-232 port of the other NPort 5200. The two NPort 5200 device servers are then connected to each other with a cross-over Ethernet cable, both are connected to the same LAN, or in a more advanced setup, they communicate with each other over a WAN (i.e., through one or more routers). Pair Connection Mode transparently transfers both data and modem control signals (although it cannot transmit the DCD signal) between the two NPorts.

## Pair Connection Master Mode

When using Pair Connection Mode, you must select Pair Connection Master Mode for the Operation mode of one of the NPort 5200 device servers. In effect, this NPort 5200 will be acting as a TCP client.

| wWW.moxa.com |  |  |  |
| :---: | :---: | :---: | :---: |
| G Main Menu O Overview | Operating Settings |  |  |
| Basic Settings | Port=1 |  |  |
| $\oplus$ Serial Settings | Operation mode | Pair Connection Master Mode ${ }^{-1}$ |  |
| - Operating Settings | TCP alive check time | $\sqrt{7}(0-99 \mathrm{~min})$ |  |
| Port 2 | Destination IP address | 192.168.1.1\| | :4001 |
| $\square$ Accessible IP Settings | Г Apply the above settings to all serial ports |  |  |
| + Auto Warning Setting + Monitor - Change Password |  | Submit |  |

TCP alive check time

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 99 min | 7 min | Required |

0 min : TCP connection is not closed due to an idle TCP connection.
1 to 99 min: The NPort 5200 closes the TCP connection automatically if there is no TCP activity for the given time.

Destination IP address

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| IP address or Domain <br> Name <br> (E.g., 192.168.1.1) | blank | Optional |
| TCP port No. | 4001 | Required |

The Pair Connection "Master" will contact the network host that has this IP address. Data will be transmitted through the port No. (4001 by default). Note that you must configure the same TCP port No. for the device server acting as the Pair Connection "Slave."

## Pair Connection Slave Mode

When using Pair Connection Mode, you must select Pair Connection Slave Mode for the Operation mode of one of the NPort 5200 device servers. In effect, this NPort 5200 will be acting as a TCP server.


TCP alive check time

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 99 min | 7 min | Required |

0 min : TCP connection is not closed due to an idle TCP connection.
1 to 99 min : The NPort 5200 closes the TCP connection automatically if there is no TCP activity for the given time.

Local TCP port

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| TCP port No. (e.g., <br> $4001)$ | 4001 | Required |

This Port No. must be the same port No. that you set up for the Pair Connection "Master" device server.

## Reverse Telnet Mode

| MOXA www.moxa.com |  |  |
| :---: | :---: | :---: |
| - Main Menu | Operating Settings |  |
| - Basic Settings | Port=1 |  |
| - Seetwork Settings | Operation mode | Reverse Telnet Mode - |
| - Operating Settings | TCP alive check time | $\sqrt{7}$ (0-99 min) |
| $\square$ Port 2 | Inactivity time | $\bigcirc$ ( $0-65535 \mathrm{~ms}$ ) |
| $\square$ Accessible IP Settings | Local TCP port | 4001 |
| $\begin{aligned} & +1 \text { Auto Warning Setting: } \\ & +\square \text { Monitor } \end{aligned}$ | Map <CR-LF> | CR-LF |
| $\square$ Change Password | 「Apply the above settings to all serial ports |  |
| - Save/Restart |  | Submit |

## TCP alive check time

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 99 min | 7 | Required |

0 min : TCP connection is not closed due to an idle TCP connection.
1 to 99 min : NPort 5200 closes the TCP connection automatically if there is no TCP activity for the given time.

## I nactivity time

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 0 to 65535 ms | 0 | Required |

Idle time setting for auto-disconnection. 0 min . means it will never disconnect.
Local TCP port

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 65535 | 4001 | Required |

Each of NPort 5200's serial ports is mapped to a TCP port. To avoid conflicts with common TCP port numbers, set port numbers to 4001 for port 1, 4002 for port 2, etc.

Map <CR-LF>

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| CR, LF, CR-LF | CR-LF | Required |

If data received through NPort 5200's Ethernet port is sent using the "enter" command, the data will be transmitted out the serial port with an added

1. "carriage return + line feed" if you select the <CR-LF> option
(i.e., the cursor will jump to the next line, and return to the first character of the line)
2. "carriage return" if you select the <CR> option
(i.e., the cursor will return to the first character of the line)
3. "line feed" if you select the <LF> option.
(i.e., the cursor will jump to the next line, but not move horizontally)

## Disabled Mode



When Operation mode is set to Disabled, that particular port will be disabled. Check the "Apply the above settings to all serial ports" to apply this setting to the other port.

## Accessible IP Settings



The NPort 5200 uses an IP address based filtering method to control access to itself.
Accessible IP Settings allows you to add or block remote host IP addresses to prevent unauthorized access. Access to NPort 5200 is controlled by IP address. That is, if a host's IP address is in the accessible IP table, then the host will be allowed to access the NPort 5200. You can use one of the following types of access.

- Only one host with a specified IP address can access the NPort 5200

Use Netmask $=255.255 .255 .255$ for one of the Accessible IP Settings rules.

- Hosts on a specific subnet can access the NPort 5200

Use a non-trivial Netmask, such as 255.255.255.0, for one of the Accessible IP Settings rules.

- Any host can access the NPort 5200

Disable this function by un-checking the "Enable the accessible IP list" checkbox.
The following table shows six specific Accessible IP Settings rules. In the "Input format" column, "192.168.1.123 / 255.255.255.255" means you should enter 192.168.1.123 for IP Address, and 255.255.255.255 for Netmask.

| Allowable Hosts | Input Format |
| :--- | :--- |
| Any host | Disable |
| 192.168 .1 .120 | $192.168 .1 .120 / 255.255 .255 .255$ |
| 192.168 .1 .1 to 192.168 .1 .254 | $192.168 .1 .0 / 255.255 .255 .0$ |
| 192.168 .0 .1 to 192.168 .255 .254 | $192.168 .0 .0 / 255.255 .0 .0$ |
| 192.168 .1 .1 to 192.168 .1 .126 | $192.168 .1 .0 / 255.255 .255 .128$ |
| 192.168 .1 .129 to 192.168 .1 .254 | $192.168 .1 .128 / 255.255 .255 .128$ |

## Auto Warning Settings

## Auto warning: Email and SNMP trap



## Mail Server

Mail server

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| IP Address or Domain <br> Name | blank | Optional |

User name

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 15 characters | blank | Optional |

Password

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 15 characters | blank | Optional |

From E-mail address

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 63 characters | blank | Optional |

E-mail address 1/2/3/4

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| 1 to 63 characters | blank | Optional |

## ATTENTION

Consult your Network Administrator or ISP for the proper mail server settings. The Auto warning function may not work properly if it is not configured correctly. NPort 5200 SMTP AUTH supports LOGIN, PLAIN, CRAM-MD5 (RFC 2554).

## SNMP Trap Server

SNMP trap server IP or domain name

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| IP address or Domain <br> Name | blank | Optional |

## Event Type



## Cold start

This refers to starting the system from power off (contrast this with warm start). When performing a cold start, NPort 5200 will issue an Auto warning message automatically by e-mail, or send an SNMP trap after booting up.

## Warm start

This refers to restarting the computer without turning the power off. When performing a warm start, NPort 5200 will send an e-mail automatically, or send an SNMP trap after rebooting.

## Authentication failure

Authentication failure occurs when the user inputs a wrong password from the Console or Administrator. When authentication failure occurs, the NPort 5200 will immediately send an e-mail or SNMP trap.

## IP address changed

The user has changed NPort 5200's IP address. When the IP address changes, NPort 5200 will send an e-mail with the new IP address before NPort 5200 reboots. If the NPort 5200 is unable to send an e-mail message to the mail server within 15 seconds, NPort 5200 will reboot anyway, and abort the e-mail auto warning.

## Password changed

The user has changed NPort 5200's password. When the password changes, NPort 5200 will send an e-mail with the password changed notice before NPort 5200 reboots. If the NPort 5200 is unable to send an e-mail message to the mail server within 15 seconds, NPort 5200 will reboot anyway, and abort the e-mail auto warning.

## DCD changed

The DCD (Data Carrier Detect) signal has changed, also indicating that the modem connection status has changed. For example, a DCD change to high also means "Connected" between local modem and remote modem. If the DCD signal changes to low, it also means that the connection line is down.

When the DCD changes, the NPort 5210/5230 will immediately send an e-mail or send an SNMP trap.

## DSR changed

The DSR (Data Set Ready) signal has changed, also indicating that the data communication equipment's power is off. For example, a DSR change to high also means that the DCE is powered ON. If the DSR signal changes to low, it also means that the DCE is powered off.

When the DSR changes, the NPort 5210/5230 will immediately send an e-mail or send an SNMP trap.
Mail

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Enable, Disable | Disable | Optional |

This feature helps the administrator manage how the NPort 5200 sends e-mail to pre-defined e-mail boxes when the enabled events-such as Cold start, Warm start, Authentication failure, etc.-occur. To configure this feature, click on the Event Type Mail checkbox.

Trap

| Setting | Factory Default | Necessity |
| :--- | :--- | :--- |
| Enable, Disable | Disable | Optional |

This feature helps the administrator manage how the NPort 5200 sends SNMP Trap to a pre-defined SNMP Trap server when the enabled events-such as Cold start, Warm start, Authentication failure, etc.-occur. To configure this feature, click on the Event Type Trap checkbox.

## ATTENTION

DCD changed and DSR changed events are only supported by RS-232 ports (ports 1 and 2 for NPort 5210, and port 1 for NPort 5230). Since NPort 5232 and NPort 52321 do not have RS-232 ports, the DCD changed and DSR changed options will not appear in the Event Type screen.

## Monitor

## Monitor Line

Click on Line under Monitor to show the operation mode and status of each connection (IPx), for each of the two serial ports.


## Monitor Async

Click on Async under Monitor to show the current status of each of the two serial ports.

| MCO2N | wWw.moxa.com |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a Main Menu | Monitor Async |  |  |  |  |  |  |  |
| Basic Settings | Async |  |  |  |  |  |  |  |
| Network Settings | Port | TxCnt | RxCnt | TxTotalcnt | RxTotalCnt | DSR | CTS | DCD |
| ヵ边 Serial Settings | 1 | 0 | 0 | 0 | 0 | OFF | OFF | OFF |
| * Operating Settings | 2 | 0 | 0 | 0 | 0 | OFF | OFF | OFF |
| - Auto Warning Settings |  |  |  |  |  |  |  |  |
| -] Monitor |  |  |  |  |  |  |  |  |
| Line |  |  |  |  |  |  |  |  |
| - 4synd |  |  |  |  |  |  |  |  |
| - Async-Setting |  |  |  |  |  |  |  |  |

## Monitor Async-Settings

Click on Async Setting under Monitor to show the run-time settings for each of the two serial ports.

| MCS | WWW.moxa.com |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Main MenuOverviewBasic SettingsNetwork SettingsSerial SettingsOperating SettingsAccessible IP Settings | Monitor Async-Settings |  |  |  |  |  |  |  |  |
|  |  |  |  | Async | Setting |  |  |  |  |
|  | Port | Baud rate | Data bits | Stop bits | Parity | FIFO | RTS/CTS | XON/XOFF | DTR/DSR |
|  | 1 | 19200 | 8 | 1 | None | Enable | OFF | OFF | OFF |
|  | 2 | 115200 | 8 | 1 | None | Enable | OFF | OFF | OFF |

## Change Password



Input the "Old password" and "New password" to change the password. Leave the password boxes blank to erase the password. Keep in mind that if the password is erased, then NPort 5200 will not have password protection.

## ATTENTION

If you forget the password, the ONLY way to configure NPort 5200 is by using the Reset button on NPort 5200's casing to "Load Factory Default."

Remember to export the configuration file using NPort Administrator when you finish the configuration. By using the Import function of NPort Administrator, your configuration can be re-loaded into NPort 5200 after using "Load Factory Default." Refer to Chapter 6 for more details about the Export and Import function.

## Load Factory Default

## WWW.moxa.com

Load Factory Default<br>This function will reset all MOXA NPort Server settings to their factory default values. Be aware that previous settings will be lost.

Use this function to reset all of NPort 5200's settings to the factory default values. Be aware that previous settings will be lost.

## Configuring NPort Administrator

The following topics are covered in this chapter:

- Overview
- Installing NPort Administrator
- Configuration
> Broadcast Search
> Unlock Password Protection
> Configuring the NPort 5200
> Upgrading the Firmware
> Export Configuration
> Import Configuration
- Monitor
- Port Monitor
- COM Mapping
> On-line COM Mapping
> Off-line COM Mapping
- IP Address Report


## Overview

Device Server Administrator lets you install and configure your NPort 5200 Series products easily over the network. Five function groups are provided to ease the installation process, allow off-line COM mapping, and provide monitoring and IP location server functions.

Device Server Administrator is an integrated software suite that bundles Device Server Administrator and the IP Serial Library, and provides everything you need to manage, monitor, and modify your NPort 5200 from a remote location.

## I nstalling NPort Administrator

1. Once the Setup program starts running, click on Next when the Welcome window opens to proceed with the installation.

Setup - NPort Administration Suite | Welcome to the NPort |
| :--- |
| Administration Suite Setup Wizard |
| This will install NPort Administration Suite Ver1.1 on your |
| computer. |
| It is recommended that you close all other applications before |
| continuing. |
| Click Next to continue, or Cancel to exit Setup. |

2. Click on Next to install program files in the default directory, or select an alternative location.

3. Click on Next to install the program using the default program name, or select a different name.

| 虽 Setup - NPort Administration Suite |  |  | - 1 |
| :---: | :---: | :---: | :---: |
| Select Start Menu Folder <br> Where should Setup place the progra |  |  |  |
| Select the Start Menu folder in which you would like Setup to create the program's shortcuts, then click Next. |  |  |  |
| NPort Administration Suite |  |  |  |
| Accessories Administrative Tools Microsoft Office ?? NPort Administration Suite |  |  |  |
| Next > Cancel |  |  |  |

4. Click on Install to proceed with the installation.

5. The Installing window reports the progress of the installation.

6. Click on Next to proceed with the installation.

7. Click on Finish to complete the installation of NPort 5200 Administration Suite.

Setup - NPort Administration Suite | Completing the NPort |
| :--- |
| Administration Suite Setup Wizard |
| Setup has finished installing NPort Administration Suite on your |
| computer. The application may be launched by selecting the |
| installed icons. |
| Click Finish to exit Setup. |
| V LaunchNPort Administrator |

## Configuration

The Administrator-Configuration window is divided into four parts.

- The top section contains the function list and online help area. (Windows NT does not support this .chm file format.)
- The five Administrator function groups are listed in the left section.
- A list of NPort 5200 serial device servers, each of which can be selected to process user requirements, is displayed in the right section.
- The activity Log, which displays messages that record the user's processing history, is shown in the bottom section.



## Broadcast Search

The Broadcast Search function is used to locate all NPort 5200s that are connected to the same LAN as your computer. Since the Broadcast Search function searches by MAC address and not IP address, all NPort 5200s connected to the LAN will be located, regardless of whether or not they are part of the same subnet as the host.

1. Position the cursor in the right middle section of the Administrator window and then click the right mouse button.

2. The Broadcast Search window will open and display the Model, IP Address, MAC Address, and Progress of the search for that particular device.

3. When the search is complete, the Broadcast Search window will close, and the NPort 5200 s that were located will be displayed in the right pane of the Administrator window. If you found more than one server connected to this network, refer to the MAC address sticker on your server(s) to determine which server(s) are the ones you wish to configure. To configure an NPort 5200, place the cursor over the row displaying that NPort 5200's information, and then double click the left mouse button.

| \% Administrator-Configuration |  |  |  |  |  | - - $\square$ ] $x$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| File Eunction Configuration View Help |  |  |  |  |  |  |
|  |  | $\begin{aligned} & \text { 紼 } \\ & \text { Locate } \end{aligned}$ | Configure |  |  |  |
|  | Configuration - 1 NPort(s) |  |  |  |  |  |
|  | No |  | Model | MAC Address | IP Address | Status |
|  | 1 |  | NPort 5210 | 00:90:E8:52:10:03 | 192.168.127.254 |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## ATTENTI ON

Before modifying the NPort 5200's configuration, use Broadcast Search to locate all NPort 5200s connected to the LAN, or use Specify by IP Address to locate a particular NPort 5200.

## Unlock Password Protection

If the NPort 5200 is password protected (indicated by "Lock" for Status), you will receive the following error, and you will not be able to use the right click method to open the configuration page.


In this case, proceed as follows to "Unlock" the device server.

1. Select the NPort 5200 with "Lock" status, click the right mouse button, and then select Unlock.

2. Input the password and then click on OK.

3. The NPort Administrator will display an "Unlock ok" message.

4. The "Lock" status will change to "Unlock," and the Administrator utility will keep this NPort 5200 in the Unlock status throughout this Administrator session.


The meanings of the six "Status" states are given below (note that the term Fixed is borrowed from the standard fixed IP address networking terminology):

## Lock

The NPort 5200 is password protected, "Broadcast Search" was used to locate it, and the password has not yet been entered from within the current Administrator session.

## Unlock

The NPort 5200 is password protected, "Broadcast Search" was used to locate it, and the password has been entered from within the current Administrator session. Henceforth during this Administrator session, activating various utilities for this NPort 5200 will not require re-entering the server password.

## Blank

The NPort 5200 is not password protected, and "Broadcast Search" was used to locate it.

## Fixed

The NPort 5200 is not password protected, and "Search by IP address" was used to locate it.

## Lock Fixed

The NPort 5200 is password protected, "Specify by IP address" was used to locate it, and the password has not yet been entered from within the current Administrator session.

## Unlock Fixed

The NPort 5200 is password protected, "Specify by IP address" was used to locate it, and the password has been entered from within the current Administrator session. Henceforth during this Administrator session, activating various utilities for this NPort 5200 will not require re-entering the server password.

## Configuring the NPort 5200

In this section, we illustrate how to access the NPort 5200's configuration utility. You should first make sure that you can connect over the network from your computer to the NPort 5200.

1. To start NPort Administrator, click on Start $\boldsymbol{\rightarrow}$ NPort Administration Suite $\boldsymbol{\rightarrow}$ NPort Administrator.

2. Unlock the NPort 5200 you wish to configure if it is password protected. Right click on the NPort 5200 and select Configure to start the configuration.

3. The progress bar shows that Administrator is retrieving configuration information from the specific NPort 5200.

4. Refer to Chapter 5 for each parameter's function definition. To modify the configuration, you must first click in the modify box to activate the parameter setting box. For example, click on the middle modify box.


[^0]:    Illustration 9
    g06528709
    Engine

[^1]:    NOTE: Where the current rating has been user configured below the rated maximum current, an appropriate fuse size must be selected to match the lower maximum output current.

[^2]:    Fig. 2.3 Typical applications of automatic transfer switches

[^3]:    Table 3.1 LED functionality

[^4]:    Fig. 5.21 Signals of Ekip Com Modbus TCP -module

[^5]:    ${ }^{1}$ Includes the tested, field replaceable module complete with operating mechanism, power module, and controller

[^6]:    ■ U for UL 80\% rated or Q for 100\% rated

    - 3 for 3-pole or 4 for 4-pole

[^7]:    * Any wire class evaluated (see terminal specification section)

[^8]:    1. Use only when interpreting part numbers. Do not use for developing part numbers
[^9]:    $\mathrm{U}=$ Power supply $\cdot \mathrm{f}=$ Frequency $\cdot \mathrm{n}=$ Speed $\cdot \mathrm{P}_{\mathrm{e}}=$ Power consumption $\cdot \mathrm{I}=$ Current draw $\cdot \mathrm{qv}=$ Air flow $\cdot \mathrm{p}_{\mathrm{fs}}=$ Pressure increase

[^10]:    Part number shown for LG (Light Gray). For other color availability see color selection guide, page C1.48.
    Base and cover sold separately.
    *"H" dimension includes duct and cover.

