

JORDAN VALLEY WATER CONSERVANCY DISTRICT WEST JORDAN, UTAH

JORDAN VALLEY WATER TREATMENT PLANT FILTER AND CHEMICAL UPGRADES

CLIENT PROJECT NO. 202001

CONTRACT/TECHNICAL SPECIFICATIONS

100% SUBMITTAL

VOLUME 5 OF 6

APPENDICES

FEBRUARY 2025

MIDVALE, UTAH 84047

.

JORDAN VALLEY WATER CONSERVANCY DISTRICT

JORDAN VALLEY WATER TREATMENT PLANT FILTER AND CHEMICAL UPGRADES

TABLE OF CONTENTS

VOLUME 2 OF 6

DIVISION 01 - GENERAL REQUIREMENTS

SECTION TITLE NO. 01110 SUMMARY OF WORK 01116 CONTRACT DOCUMENT LANGUAGE 01140 WORK RESTRICTIONS 01210 ALLOWANCES 01260 CONTRACT MODIFICATION PROCEDURES 01292 SCHEDULE OF VALUES 01294 APPLICATIONS FOR PAYMENT **PROJECT MEETINGS** 01312 01321 SCHEDULES AND REPORTS 01322 WEB BASED CONSTRUCTION DOCUMENT MANAGEMENT SUBMITTAL PROCEDURES 01330 HAZARDOUS MATERIAL PROCEDURES 01354 01355 STORMWATER POLLUTION PREVENTION 01357 DELEGATED DESIGN PROCEDURES 01410 REGULATORY REQUIREMENTS 01450 QUALITY CONTROL 01455 REGULATORY QUALITY ASSURANCE CONTRACTOR QUALITY CONTROL PLAN 01460 TEMPORARY FACILITIES AND CONTROLS 01500 01573 EROSION AND SEDIMENT CONTROL PRODUCT REQUIREMENTS 01600 01722 FIELD ENGINEERING SELECTIVE ALTERATIONS AND DEMOLITION 01738 01756 COMMISSIONING DISINFECTION 01757 01759 WATER LEAKAGE TEST FOR CONCRETE STRUCTURES 01770 CLOSEOUT PROCEDURES

- 01782 OPERATION AND MAINTENANCE MANUALS
- 01783 WARRANTIES AND BONDS
- 01850 DESIGN CRITERIA

DIVISION 02 - SITE CONSTRUCTION

SECTION NO.	TITLE
02050	SOILS AND AGGREGATES FOR EARTHWORK
02085	PRECAST CONCRETE VAULTS
02200	SITE CLEARING
02260	EXCAVATION SUPPORT AND PROTECTION
02300	EARTHWORK
02312	CONTROLLED LOW STRENGTH MATERIAL (CLSM)
02318	TRENCHING
02370	RIPRAP AND GABIONS EROSION AND SEDIMENTATION CONTROL
02581	PRECAST ELECTRICAL HANDHOLES AND ELECTRICAL MANHOLES
02600	CONCRETE MANHOLES
02620	FILTER FABRIC
02621	STABILIZATION FABRIC
02742	ASPHALTIC CONCRETE PAVING
02747	BITUMINOUS PAVEMENT SURFACE SEAL
02762	PAVEMENT MARKINGS
02772	CONCRETE CURBS, GUTTERS, AND SIDEWALKS
02820	FENCES AND GATES
02939	SEEDING
02952	PAVEMENT RESTORATION AND REHABILITATION

DIVISION 03 - CONCRETE

SECTION NO.	TITLE
03055	ADHESIVE-BONDED REINFORCING BARS AND ALL THREAD RODS IN CONCRETE
03071	EPOXIES
03072	EPOXY RESIN/PORTLAND CEMENT BONDING AGENT
03102	CONCRETE FORMWORK
03150	CONCRETE ACCESSORIES
03154	HYDROPHILIC RUBBER WATERSTOP

- 03200 CONCRETE REINFORCING
- 03300 CAST-IN-PLACE CONCRETE
- 03366 CONCRETE FINISHES
- 03600 GROUTING
- 03703 THERMAL CONTROL OF CONCRETE
- 03922 PREPACKAGED SMALL AGGREGATE REPAIR CONCRETE
- 03926 STRUCTURAL CONCRETE REPAIR
- 03931 EPOXY INJECTION SYSTEM
- 03933 HYDROPHILIC AND HYDROPHOBIC FOAM POLYURETHANE RESIN INJECTION SYSTEM

DIVISION 04 - MASONRY

- SECTION TITLE
- NO.04055ADHESIVE BONDING REINFORCING BARS AND ALL THREAD RODS IN
MASONRY04090MASONRY ACCESSORIES04100MORTAR AND MASONRY GROUT
- 04216 ANCHORED CMU VENEER
- 04220 CONCRETE UNIT MASONRY

DIVISION 05 - METALS

SECTION TITLE

NO.

- 05120 STRUCTURAL STEEL FRAMING
- 05140 STRUCTURAL ALUMINUM
- 05190 MECHANICAL ANCHORING AND FASTENING TO CONCRETE AND MASONRY
- 05216 OPEN WEB STEEL JOIST FRAMING
- 05310 STEEL DECKING
- 05500 METAL FABRICATIONS

DIVISION 06 - WOOD AND PLASTICS

SECTION NO.	TITLE
06608	FIBERGLASS REINFORCED PLASTIC
06611	FIBERGLASS REINFORCED PLASTIC FABRICATIONS

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

SECTION TITLE NO.

- 07110 DAMPPROOFING
- 07130 SHEET WATERPROOFING
- 07190 WATER REPELLENTS
- 07220 ROOF AND DECK INSULATION
- 07260 VAPOR RETARDERS
- 07540 THERMOPLASTIC POLYOLEFIN (TPO) MEMBRANE ROOFING
- 07600 FLASHING AND SHEET METAL
- 07700 ROOF SPECIALTIES
- 07722 ROOF HATCHES
- 07900 JOINT SEALANTS

DIVISION 08 - DOORS AND WINDOWS

SECTION TITLE

NO.

- 08110 HOLLOW METAL DOORS AND FRAMES
- 08320 FLOOR ACCESS DOORS
- 08332 OVERHEAD COILING DOORS
- 08412 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS
- 08518 FIRE RATED WINDOWS
- 08520 ALUMINUM WINDOWS
- 08620 UNIT SKYLIGHTS
- 08710 DOOR HARDWARE
- 08800 GLAZING
- 08810 FIRE RATED GLAZING
- 08910 LOUVERS

DIVISION 09 - FINISHES

SECTION TITLE

- NO. 09910 PAINTING
- 09960 HIGH-PERFORMANCE COATINGS

VOLUME 3 OF 6

DIVISION 10 - SPECIALTIES

SECTION NO.	TITLE
10400	SIGNAGE
10401	SAFETY EQUIPMENT
10520	FIRE PROTECTION SPECIALTIES
	DIVISION 11 - EQUIPMENT

SECTION NO.	TITLE
11242	LIQUID CHEMICAL DIAPHRAGM-TYPE METERING PUMPS
11244	LIQUID CHEMICAL PERISTALTIC HOSE METERING PUMPS
11256	POLYMER BLENDING AND FEED EQUIPMENT: DRY
11260	GASEOUS CHLORINATION SYSTEM
11263	ON-SITE CHLORINE DIOXIDE GENERATION SYSTEM
11265	CHLORINE SCRUBBER SYSTEM
11312J	SUBMERSIBLE SUMP PUMPS
11312K	SUBMERSIBLE MEDIUM CAPACITY CENTRIFUGAL PUMPS
11312S	HORIZONTAL MAGNETIC DRIVE CENTRIFUGAL PUMPS
11312V	SUBMERSIBLE CHEMICAL LIQUID SUMP PUMPS

DIVISION 13 - SPECIAL CONSTRUCTION

SECTION NO.	TITLE
13206A	FIBERGLASS REINFORCED PLASTIC ABOVEGROUND STORAGE TANKS
13207	STRAND-WOUND CIRCULAR PRESTRESSED CONCRETE TANK WITH A TYPE I CORE
13208	POLYETHYLENE TANKS
13224	FILTER UNDERDRAIN SYSTEM
13226	FILTER MEDIA
13270	PAC STORAGE AND HANDLING SYSTEM
13446	MANUAL ACTUATORS
13447	ELECTRIC ACTUATORS

DIVISION 14 - CONVEYING SYSTEMS

SECTION NO.	TITLE
14634	TOP RUNNING SINGLE GIRDER BRIDGE CRANE
	DIVISION 15 - MECHANICAL
SECTION NO.	TITLE
15050	COMMON WORK RESULTS FOR MECHANICAL EQUIPMENT
15052	COMMON WORK RESULTS FOR GENERAL PIPING
15061	PIPE SUPPORTS
15062	PREFORMED CHANNEL PIPE SUPPORT SYSTEM
15063	NON-METALLIC PIPE SUPPORT SYSTEM
15076	PIPE IDENTIFICATION
15082	PIPING INSULATION
15110	COMMON WORK RESULTS FOR VALVES
15111	BALL VALVES
15112	BUTTERFLY VALVES
15114	CHECK VALVES
15115	GATE, GLOBE, AND ANGLE VALVES
15117	SPECIALTY VALVES
15118	PRESSURE CONTROL VALVES
15119	AIR AND VACUUM RELIEF VALVES
15120	PIPING SPECIALTIES
15121	PIPE COUPLINGS
15122	FIRE HYDRANTS
15125	STRAINERS
15211	DUCTILE IRON PIPE: AWWA C151
15229	REINFORCED CONCRETE PIPE: ASTM C76
15230	PLASTIC PIPING AND TUBING
15241	HIGH DENSITY POLYETHYLENE (HDPE) PIPE: AWWA C906
15244	POLYVINYL CHLORIDE (PVC) PIPE: PRESSURE
15247	POLYVINYL CHLORIDE (PVC) PIPE: GRAVITY
15270	STEEL PIPE: ASTM A53
15272	STEEL PIPE: BURIED
15278	STEEL PIPE: EXPOSED
15286	STAINLESS STEEL PIPE AND TUBING

15302	GALVANIC CATHODIC PROTECTION
15400	PLUMBING SYSTEMS
15430	EMERGENCY EYE/FACE WASH AND SHOWER EQUIPMENT
15500	COMMON WORK RESULTS FOR HVAC
15735	POSITIVE PRESSURIZATION EQUIPMENT
15740	HEAT PUMPS
15745	MAKEUP AIR UNIT
15762	HEATING UNITS
15772	PROCESS PIPING AND EQUIPMENT HEAT TRACING
15812	METAL DUCTS
15814	FIBERGLASS REINFORCED PLASTIC DUCTS
15830	FANS
15936	INSTRUMENTATION AND CONTROL DEVICES FOR HVAC
15954	TESTING, ADJUSTING, AND BALANCING FOR HVAC
15956	PIPING SYSTEMS TESTING
15958	MECHANICAL EQUIPMENT TESTING

DIVISION 16 - ELECTRICAL

SECTION NO.	TITLE
16050	COMMON WORK RESULTS FOR ELECTRICAL
16052	HAZARDOUS CLASSIFIED AREA CONSTRUCTION
16060	GROUNDING AND BONDING
16070	HANGERS AND SUPPORTS
16075	IDENTIFICATION FOR ELECTRICAL SYSTEMS
16123	600-VOLT OR LESS WIRES AND CABLES
16124	MEDIUM VOLTAGE CABLES
16125	FIBER OPTIC CABLE AND APPURTENANCES
16130	CONDUITS
16133	DUCT BANKS
16134	BOXES
16140	WIRING DEVICES
16150	LOW VOLTAGE WIRE CONNECTIONS
16151	MEDIUM VOLTAGE CABLE CONNECTIONS
16222	LOW VOLTAGE MOTORS UP TO 500 HORSEPOWER
16235	SINGLE SPARK-IGNITED GENERATOR SET

VOLUME 4 OF 6

DIVISION 16 - ELECTRICAL

SECTION NO.	TITLE
16262	VARIABLE FREQUENCY DRIVES 0.50 - 50 HORSEPOWER
16265	REDUCED HARMONIC VARIABLE FREQUENCY DRIVES
16272	DRY-TYPE TRANSFORMERS
16273	LIQUID FILLED PAD MOUNTED TRANSFORMERS
16285	SURGE PROTECTIVE DEVICES
16290	ELECTRICAL POWER MONITORING
16305	ELECTRICAL SYSTEM STUDIES
16411	DISCONNECT SWITCHES
16412	LOW VOLTAGE MOLDED CASE CIRCUIT BREAKERS
16413	LOW VOLTAGE INSULATED CASE CIRCUIT BREAKERS
16422	MOTOR STARTERS
16442	INDIVIDUALLY MOUNTED CIRCUIT BREAKER SWITCHBOARDS
16444	LOW VOLTAGE MOTOR CONTROL CENTERS
16445	PANELBOARDS
16472	PACKAGED POWER SUPPLY CENTER
16491	TRANSFER SWITCHES
16494	LOW VOLTAGE FUSES
16510	LIGHTING: LED LUMINAIRES
16670	LIGHTNING PROTECTION
16950	FIELD ELECTRICAL ACCEPTANCE TESTS
16990A	CONDUIT SCHEDULE AREA 01 - SITE
16990B	CONDUIT SCHEDULE AREA 30 - FILTERS
16990C	CONDUIT SCHEDULE AREA 41 - BACKWASH TANK AND VAULT
16990D	CONDUIT SCHEDULE AREA 55 - CULINARY PUMP STATION
16990E	CONDUIT SCHEDULE AREA 62 AND 66 - PC AND FL BUILDINGS
16990F	CONDUIT SCHEDULE AREA 63 - CHLORINE BUILDING
16990G	CONDUIT SCHEDULE AREA 65 - CAUSTIC SODA BUILDING
16990H	CONDUIT SCHEDULE AREA 68 - PAC AREA
16990J	CONDUIT SCHEDULE AREA 69 - PEA AREA
16990K	CONDUIT SCHEDULE AREA 71 - PEC AREA

DIVISION 17 - INSTRUMENTATION AND CONTROLS		
SECTION NO.	TITLE	
17050	COMMON WORK RESULTS FOR PROCESS CONTROL AND INSTRUMENTATION SYSTEMS	
17100	CONTROL STRATEGIES	
17101 ATT A	BACKWASH SEQUENCE OVERVIEW FLOW CHART	
17101 ATT B	FILTER CONTROL STRATEGY BACKWASH OPERATING MODE	
17101 ATT C	FILTER CONTROL STRATEGY BACKWASH PERMISSIVE CHECKS	
17101 ATT D	FILTER CONTROL STRATEGY FILTER FAULTS	
17101 ATT E	FILTER OPERATING MODES	
17101 ATT F	FILTER CONTROL STRATEGY FLOW RATE OF CONTROL FILTRATION OPERATION	
17101 ATT G	FILTER TIMING DIAGRAM	
17101 ATT H	FILTER HEADLOSS MEASUREMENT	
17101A	SPECIFIC CONTROL STRATEGIES - FILTERS	
17101B	SPECIFIC CONTROL STRATEGIES - CHEMICALS	
17201	LEVEL MEASUREMENT: SWITCHES	
17204	LEVEL MEASUREMENT: CAPACITANCE	
17206	LEVEL MEASUREMENT: ULTRASONIC	
17208	LEVEL MEASUREMENT: RADAR PULSE TIME OF FLIGHT (PTOF)	
17301	FLOW MEASUREMENT: SWITCHES	
17302	FLOW MEASUREMENT: MAGNETIC FLOWMETERS	
17316	FLOW MEASUREMENT: ROTAMETERS (VARIABLE AREA FLOWMETERS)	
17401	PRESSURE/VACUUM MEASUREMENT: DIAPHRAGM AND ANNULAR SEALS	
17402	PRESSURE/VACUUM MEASUREMENT: INSTRUMENT VALVES	
17403	PRESSURE/VACUUM MEASUREMENT: SWITCHES	
17404	PRESSURE/VACUUM MEASUREMENT: GAUGES	
17405	PRESSURE/VACUUM MEASUREMENT: DIRECT	
17406	PRESSURE/VACUUM MEASUREMENT: DIFFERENTIAL	
17504	ANALYZERS: GAS MONITORS	
17509	ANALYZERS: TURBIDITY	
17525	ANALYZERS: PROCESS ANALYZER TRANSMITTERS	
17604	TEMPERATURE MEASUREMENT: RTD	
17622	WEIGHT MEASUREMENT: PLATFORM SCALE AND LOAD CELLS	

17710	CONTROL SYSTEMS: PANELS, ENCLOSURES, AND PANEL
	COMPONENTS

- 17712 CONTROL SYSTEMS: UNINTERRUPTIBLE POWER SUPPLIES 10 KVA AND BELOW
- 17720 CONTROL SYSTEMS: PROGRAMMABLE LOGIC CONTROLLERS
- 17721 CONTROL SYSTEMS: LOCAL OPERATOR INTERFACE (LOI)
- 17733 CONTROL SYSTEMS: NETWORK MATERIALS AND EQUIPMENT
- 17903 SCHEDULES: I/O LIST
- 17950 COMMISSIONING FOR INSTRUMENTATION AND CONTROLS

VOLUME 5 OF 6

APPENDICES

APPENDIX TITLE

NO.

- APPENDIX A GEOTECHNICAL REPORT
- APPENDIX B HAZARDOUS MATERIALS REPORT
- APPENDIX C GATE OPERATOR INSTALLATION AND OPERATION MANUAL

APPENDIX A - GEOTECHNICAL REPORT

Geotechnical Report

Jordan Valley Water Treatment Plant Filter & Chemical Feed Upgrades Herriman, Utah

Prepared For: Carollo Engineers June, 2024

Geotechnical Report Jordan Valley Water Treatment Plant Filter & Chemical Feed Upgrades Project No. 00823-023

Prepared for:

Carollo Engineers c/o Austin Peters 7090 South Union Park Avenue, Suite 600 Midvale, Utah

Prepared By:

Reviewed By:

Remy Thigpen, E.I.T. Staff Engineer

IGES, Inc. 2702 South 1030 West, Suite 10 South Salt Lake, Utah 84119 (801) 270.9400

Revision History

Revision	Revision Date	Comments
0	2/1/23	DRAFT
1	6/28/24	Final Geotechnical Investigation Report

Table of Contents

1	Exe	cutive	Summary1
2	Intr	oduct	ion3
	2.1	Proj	ect Description3
3	Me	thods	of Study4
	3.1	Lite	ature Review
	3.2	Prev	ious Geotechnical Investigations4
	3.3	Field	I Investigation
	3.3	.1	Soil Borings
	3.3	.2	Additional Field Investigation7
	3.3	.3	Backfill and Surface Restoration7
	3.3	.4	Geophysical Testing
	3.4	Labo	pratory Investigation
	3.5	Engi	neering Analysis
4	Geo	ologic	Conditions9
	4.1	Gen	eral Geologic Setting9
	4.1	.1	Regional Geology From Literature9
	4.1	.2	Seismotectonic Setting From Literature9
	4.2	Surf	icial Site Geology from Literature10
	4.3	Hyd	rology
	4.4	Geo	logic Hazards from Literature
	4.4	.1	Surface Fault Rupture11
	4.4	.2	Strong Ground Motions
	4.4	.3	Liquefaction11
	4.4	.4	Geologic Radon
	4.5	Seis	micity
	4.5	.1	Seismic Site Class
	4.5	.2	Design Spectrum
5	Gei	neraliz	ed Site Conditions
	5.1	Exis	ing Conditions
	5.2	Subs	surface Conditions
	5.2	.1	Earth Materials

	5.2.	2	Groundwater Conditions	. 14
	5.3	Envi	ronmental Conditions	. 14
	5.4	Stre	ngth of Earth Material	. 15
	5.5	Soil	Chemistry	. 15
6	Des	ign Re	ecommendations	. 17
	6.1	Gen	eral Conclusions	. 17
	6.2	Desi	gn Considerations	. 17
	6.3	Shal	low Foundation Recommendations	. 17
	6.3.	1	Spread Footings	. 17
	6.3.	2	Bearing Capacity	. 18
	6.3.	3	Foundation Burial Depth and Size	. 18
	6.3.	4	Sliding Resistance	. 18
	6.4	Sett	lement	. 19
	6.4.	1	Immediate Settlement	. 19
	6.4.	2	Dynamic Settlement	. 19
	6.4.	3	Modulus of Subgrade Reaction	. 20
	6.4.	4	Mat/Slab Detailing	. 20
	6.5	Late	ral Support	. 21
	6.6	Pave	ement recommendations	.23
	6.6.	1	Pavement Design	. 23
	6.6.	2	Pavement Materials	. 24
	6.7	Moi	sture Protection and Drainage	.24
	6.8	Soil	Chemistry	. 25
7	Con	struc	tion Recommendations	. 27
	7.1	Eart	hwork	. 27
	7.1.	1	Foundation Preparation	. 27
	7.1.	2	General Site Preparation and Grading	. 27
	7.1.	3	Soft Soil Stabilization	. 27
	7.1.	4	Structural Fill and Compaction	. 28
	7.1.	5	Reuse of Onsite Soils	. 30
	7.1.	6	Oversized Materials	.31
	7.1.	7	Utility Trench Backfill	.31
	7.1.	8	Excavation Stability	.31

	7.2	Monitoring of Existing Infrastructure	. 31
	7.3	Construction Monitoring	. 32
8	Clos	- ure	. 33
	8.1	Limitations	. 33
	8.2	Additional Services	. 33
9	Refe	rences	. 34

Appendices

Appendix A	Figure A-1 Figure A-2a,b Figure A-3	Site Vicinity Map Geologic Maps Exploration Map
Appendix B	Figure B-1 – B-4 Figure B-5	Boring Logs Key to Soil Symbols and Terminology
Appendix C		Laboratory Results
Appendix D		Geophysics Report Seismic Data

List of Tables

Table 1:	Summary of Explorations	7
Table 2:	Spectral Accelerations for MCER, Risk-Targeted Values (Structural)	13
Table 3:	Spectral Accelerations for MCE, Geo-Mean Values (Geotechnical)	13
Table 4:	Summary of Shear Strength Testing Results	15
Table 5:	Corrosion Potential Indicator Testing Summary	16
Table 6:	Spread Footing Sliding Resistance	19
Table 7:	Lateral Pressure Coefficients	22
Table 8:	Summary of Pavement Analysis	23
Table 9:	Summary of Pavement Sections	24
Table 10:	Sulfate Based Corrosion Potential Indicator for Concrete	25
Table 11:	Corrosion Potential Indicator Testing Summary	26
Table 12:	Summary of Compaction Requirements	

List of Acronyms

AASHTO	American Association of State Highway and Transportation Officials
Utah AGRC	Utah Automated Geographic Reference Center
ASCE	American Society of Civil Engineers
ASTM	ASTM International (formerly American Society for Testing and Materials)
EERI	Earthquake Engineering Research Institute
EPA	Environmental Protection Agency
IBC	International Building Code
IGES	Intermountain GeoEnvironmental Services, Inc.
ISB	Intermountain Seismic Belt
MCE _R	Risk-Targeted Maximum Considered Earthquake
NCEER	National Center for Earthquake Engineering Research
NSF	National Science Foundation
PGA	Peak Ground Acceleration
SGID	State Geographic Information Database
USCS	Unified Soil Classification System
USGS	United States Geological Survey
UGS	Utah Geological Survey
Utah SGID	Utah State Geographic Information Database
WFZ	Wasatch Fault Zone
#PE#	# Probability of exceedance in # years

1 Executive Summary

This report presents the results of a geotechnical investigation conducted for the proposed filter and chemical feed upgrades for the Jordan Valley Water Treatment Plant (JVWTP) in Herriman, Utah. The purpose of this investigation was to observe and document the subsurface conditions and provide recommendations for the design and construction of the proposed structures. **Based on the subsurface conditions encountered, it is our opinion that the native site soils are suitable to support the proposed structures provided that the recommendations presented in this report are completely incorporated into the design and construction.**

A summary of the field and laboratory exploration programs performed for this study, a discussion of the subsurface conditions observed, and recommendations regarding the design and construction of the proposed site improvements are provided in this report. Key findings and conclusions are presented in the following paragraphs.

- Site Characterization
 - The native subsurface conditions observed at the project site generally consisted of coarse-grained soil. Layers of fine grained soils about 3 to 5 feet thick were observed in B-03 at depths of 15 to 23 feet below existing grade. Fine grained soils were tested to be hard lean clay with varying amounts of coarse-grained material or low plasticity silts. Coarse grained layers were tested to be dense to very dense silty-sand with occasional gravel.
 - Groundwater was not observed during the investigation. Mapping shows groundwater is expected to be at depths greater than 30 feet. Seasonal and annual variations in precipitation, irrigation, and rate of snowmelt will influence the depth-togroundwater across the project site.
- Geologic Hazard Conclusions
 - The site is not located within a surface fault rupture special study area, and no faults are known to be present on or across the subject property. However, Biek (2005) indicated the Jordan Narrows fault located to the north and east of the site. Subsequent studies discussed in Section 3.2 determined that the fault was not considered an active fault. As a result, the surface fault rupture hazard is not anticipated to adversely impact the subject property.
 - Earthquake ground shaking may affect the project area and is considered to pose a high risk. The site is situated within a seismically active area and severe to violent ground shaking should be anticipated in the event an earthquake occurs within the lifetime of the structure.

- The site is mapped as having a *Very Low* liquefaction hazard, liquefaction is therefore not anticipated to impact the project.
- The site is mapped as have a *High* risk for indoor radon.
- The site is not mapped for having a risk of expansive or collapsible soils, or landslides.
- Design and Construction Conclusions
 - The existing native silty sands are considered suitable or practical for reuse onsite as structural fill.
 - Total settlement of the across all structures on the site is expected to be less 0.1 inches.
 - Shallow spread or continuous wall footings on competent native subgrade or a minimum of two feet of properly compacted granular structural fill overlying competent native earth materials, may be proportioned utilizing a maximum net allowable bearing pressure of 4,000 pounds per square foot (psf).
 - We recommend active, at-rest, and passive lateral earth pressure coefficients of 0.33, 3.00, 0.50, respectively, and seismic active and seismic passive lateral earth pressure coefficients of 0.65 and 2.51, respectively for buried structures backfilled with native site soils.

NOTE: The scope of services provided within this report are limited to the assessment of the subsurface conditions at the subject site. The executive summary is provided solely for purposes of overview and is not intended to replace the report of which it is part and should not be used separately from the report.

2 Introduction

The purpose of our investigation was to assess the nature and engineering properties of the subsurface soils at the project site and to provide recommendations for the design and construction of foundations, buried structures, grading, and drainage. Additionally, geologic hazards have been reviewed for the project area. The scope of work completed for this study included literature review, subsurface exploration, laboratory testing, engineering analyses, and the preparation of this report.

Our services were performed in accordance with our proposal dated June 1, 2021, and your signed authorization. This report was prepared in accordance with the Salt Lake County Code of Ordinance Chapter 19.75 Geological Hazards Ordnance (Salt Lake County, 2021), and the industry *standard-of-care*. The recommendations presented in this report are subject to the limitations presented in Section 8.1.

2.1 Project Description

The project will includes additions to the JVWTP within existing property boundaries. The project is currently in the early planning stages; however, we have been told that the project will include construction of a 1Mgal prestressed concrete backwash tank (~75-ft diameter, 20-ft tall), two (2) Powdered Activated Carbon (PAC) Silos (each 44-ft tall) and two buildings for Caustic Soda (~2,800 sq-ft) and Chlorine Gas (~7,000 sq-ft) that are supported by a reinforced concrete slab foundation built on engineered fill. The two buildings and the PAC silos may be constructed with foundations at/near the current site grade, or they may be cut into the existing hillside; requiring construction of a retaining wall to limit the lateral extent of site grading.

Final construction plans were not available at the time of this report; however, we presume that the new buildings(s) will be on-grade structures (no basement) founded on conventional spread footings. Loading information was not available at the time of this report.

3 Methods of Study

The subsurface conditions were investigated by means of a literature review and soil borings. Samples were obtained during the field program and representative samples were tested during the laboratory investigation.

3.1 Literature Review

The following items were reviewed as part of this investigation:

- Stokes (1987), Milligan (2000), Hintze (1988), and Oviatt (2015) provide regional geologic setting information.
- Milligan, (2000), Hintze (1993), Lund (1990), Stokes (1987), and Utah Geological Survey (UGS, 1996, 2019) provide regional seismotectonic setting information.
- Biek (2005) provides the most recent 1:24,000-scale geologic mapping that covers the project site, in the geologic map of the Jordan Narrows Quadrangle, Salt Lake and Utah Counties, Utah.
- The Utah Geological Survey (UGS) Utah Quaternary Fault and Fold Map (UGS, 2019) was reviewed to identify the location of proximal faults that have had associated Quaternary-aged displacement.
- Groundwater mapping and data including:
 - Data provided by the Utah SGID (Utah AGRC)
- The Federal Emergency Management Agency (FEMA, 2021) flood insurance rate map that covers the subject property.
- McDonald (2018) provides fault mapping and surface fault rupture special study mapping in the project area.
- The Utah Geological Hazards Portal (UGS 2023) provides earthquake ground shaking and Surface Fault Rupture Special Study Zone mapping.

3.2 Previous Geotechnical Investigations

In January of 1985, Dames & Moore performed a site investigation for the purpose of evaluating the geoseismic setting of the water purification plant, develop a seismic risk for existing and proposed plant facilities, and provide supplemental soils and earthwork recommendations for final design. The field program consisted of two trenches situated to expose suspected fault zones. It was determined that the fault is "potentially active," but not considered an active fault. It was determined that it was unlikely to move during the design life of the proposed water

purification plant (50-100 years).

In August of 2009, IGES performed a geotechnical investigation for the Chlorine Dioxide building for the purpose of providing recommendations for general site grading and the design and construction of foundations, slabs-on-grade, and exterior concrete flatwork. The field program consisted of two boreholes to depths varying from 10 to 25 feet below existing grade. Subsurface conditions were described as fill underlain by silty sand with gravel. Groundwater was not observed during the investigation.

In April of 2014, Gerhart Cole, Inc. performed a geotechnical study for the 3200 West access road for the purpose of developing geotechnical recommendations for roadway construction, maintenance, and repair. The field program consisted of 8 test holes to depths of 4 feet below existing grade, and 7 dynamic cone penetrometer (DCP) soundings. The subsurface conditions were identified as silty sands (SM). No groundwater was encountered during the investigation.

In May of 2015, Gerhart Cole, Inc. performed a geotechnical and geologic study for the finished water reservoir located at the treatment plant. The purpose of the study was to develop geotechnical recommendations for the reservoir. The field program consisted of two test holes to depths of 51.5 and 61 feet, and a fault trench. The subsurface conditions were described as about 27 to 31 feet of silty sand (SM) underlain by gravel with sand and silt. The study also noted that no observed evidence of faulting in the trenches conducted. They concluded that there have not been any surface fault rupture events in the past 22,000 years.

In February of 2020, Gerhart Cole, Inc. completed a technical memorandum for the design and construction of the upgrades at the water treatment plant. These consisted of updating seismic design parameters with IBC 2021, providing earth pressures for design of buried structures, providing recommendations for concrete lining of existing reclaim ponds, and assessing local slope stability associated with installation of new pipe. The field program consisted of 5 soil borings to depth varying from 17 to 30 feet below existing grade, and a geophysical survey to obtain a shear wave velocity profile. Subsurface conditions of native soil were described as silty to clayey sands (SM to SC) with gravel and cobbles/boulders. Groundwater was not encountered during the field investigation.

In November of 2022, Gerhart Cole, Inc. completed a technical memorandum for the design and construction of sedimentation basins for the water treatment plant. The field program consisted of one boring to a depth of 36 feet below the existing grade. Native soils were identified as being primarily medium dense to very dense silty sands and gravels (SM and GM). No groundwater was encountered during the field investigation.

3.3 Field Investigation

Characterization of the general subsurface conditions at the project site was undertaken with 4 ODEX soil borings. Investigation locations were selected based on our understanding of the

proposed construction at the time of the investigations. Explorations were located by IGES personnel based on offset from existing site features. Prior to the field program, a Blue Stakes of Utah request was submitted to delineate public utilities in the vicinity of the explorations. Explorations were advanced in areas accessible to the equipment and clear of marked utilities. A summary of the explorations performed to date is presented in Table 1.

3.3.1 Soil Borings

Four test borings (designated B-01 through B-04) were performed between December 14 and December 15, 2023, to depths ranging between 34.0 and 40.0 feet below the existing grade. The borings were advanced by ConeTec by a track-mounted Fraste drill rig equipped with ODEX 90 drill bit and casing (4-1/2 inch outside diameter). Groundwater was not encountered in any of the borings. Samples generally were obtained at 5-foot intervals continuously, except for B-01 where samples were obtained at 2.5-foot intervals for the first 10 feet and then 5-foot intervals thereafter. Samples were collected with split-barrel type SPT spoon or Modified California samplers in general accordance with ASTM D1586 and ASTM D3550 as applicable. Split barrel samplers were advanced utilizing an auto trip 140-pound hammer free falling 30 inches. Blow counts for these sampling events were recorded by an IGES representative and were corrected for hammer energy using the measured hammer energy transfer ratio. Blow counts for large diameter samplers (e.g. Modified California, Type-U) were corrected to a standard split spoon value utilizing the method detailed in Fang (1991). Soil samples were packaged in sealed containers and transported in general accordance with ASTM D4220 to the IGES geotechnical laboratory in South Salt Lake for subsequent review and testing. A representative of IGES observed the borings being performed, visually classified the samples in general accordance with ASTM D2488 and prepared the graphical boring logs shown in Figures B-1 through B-4. A key to the soil symbols and terminology is shown as Figure B-5.

		· · · · · · · · · · · · · ·	
Field Exploration	Ground Surface Elevation ¹ (feet)	Total Depth of Exploration (feet)	Encountered Groundwater Depth [Elevation ¹] (feet)
B-01	4772	40.0	Not Encountered
B-02	4773	35.0	Not Encountered
B-03	4768	40.0	Not Encountered
B-04	4767	40.0	Not Encountered

Summary of Explorations

Notes:

1) Approximate, based on Google Earth elevation

Table 1:

3.3.2 Additional Field Investigation

After the initial field investigation involving the borings, it was learned that material from an existing mound (location of the proposed backwash tank) is likely to be reused as grading or structural fill on the project. IGES representatives returned to the site and collected bulk samples of material from the existing mound in shallow hand-excavations. Additional testing was also performed to determine engineering properties of the mounded soil and whether it was suitable for reuse as fill. Bulk samples were mixed prior to testing based on the assumption that materials from the mound would be blended together prior to placement.

3.3.3 Backfill and Surface Restoration

Following completion of the explorations, the boreholes were backfilled using granular bentonite pellets. In grassy areas, excess cuttings were mounded over the borehole.

3.3.4 Geophysical Testing

A geophysical survey of the site was performed on December 11, 2023, by IGES. The survey was performed to measure the shear wave velocity profile to aid in seismic site classification. The geophysical survey report has been included in Appendix A.

3.4 Laboratory Investigation

Geotechnical laboratory tests were conducted by IGES on relatively undisturbed and bulk soil samples, obtained during the field investigation. The laboratory testing program was designed to

evaluate the engineering characteristics of on-site earth materials. Laboratory tests conducted during this investigation included the following:

- Index Testing
 - o In situ Moisture Content *and Unit Weight* (ASTM D7263 *and D2216*)
 - o Atterberg Limits (ASTM D4318)
 - o Particle-Size Analysis(ASTM D6913)
 - o Percent Fines (ASTM D1140)
- Compaction Testing
 - o Laboratory Compaction Characteristics of Soil (Modified Effort, ASTM D1557)
- Subgrade Pavement Support
 - o California Bearing Ratio (CBR, ASTM D1883)
- Soil Strength Testing
 - o Drained Direct Shear (ASTM D3080)
- Corrosion Potential
 - o Sulfate (ASTM C1580)
 - o Chloride (ASTM D4327)
 - o pH (American Association of State Highway and Transportation Officials [AASHTO] T289)
 - o Electrical Resistivity (AASHTO T288)

Selected results have been presented on the attached boring logs in Appendix B. A summary table along with the full results of the laboratory testing are provided in Appendix C.

3.5 Engineering Analysis

Engineering analyses were performed using soil data obtained from the field program, laboratory test results, and empirical correlations from material density, depositional characteristics and classification. Appropriate factors of safety were applied to the results consistent with industry standards and Salt Lake County Ordinance.

4 Geologic Conditions

4.1 General Geologic Setting

4.1.1 Regional Geology From Literature

The near-surface geology of the Salt Lake Valley is dominated by sediments that were deposited within the last 30,000 years predominantly by the Pleistocene Lake Bonneville, which was as much as 1,000 feet deep (Hintze, 1993). The two most prominent Lake Bonneville shorelines are known as the Bonneville and Provo Shorelines. The Bonneville Shoreline is the highest shoreline of Lake Bonneville and was formed approximately 18,000 years ago (Oviatt, 2015). Not long after Lake Bonneville reached its highstand shoreline, the lake catastrophically drained through an outlet near Red Rock Pass in southeastern Idaho and into the Snake River Plain before stabilizing at the Provo level (Oviatt, 2015). The Bonneville Flood lowered the lake level approximately 350 feet from the Bonneville Shoreline to the Provo Shoreline. The Provo Shoreline developed over a considerably longer period, from between approximately 18,000 and 15,000 years ago.

The lacustrine sediments near the mountain front consist mostly of beach sand and gravel. Sediments toward the center of the valley are predominantly offshore deposits of clay, silt, and fine sand. Post-Bonneville alluvial and colluvial cover as well as mass-movement deposits are common along the Wasatch Front and in some places extend to the central part of the valley.

4.1.2 Seismotectonic Setting From Literature

The Wasatch Front forms the boundary between two seismically-active physiographic provinces, the Basin and Range Province to the west and the Middle Rocky Mountains Province to the east (Milligan, 2000). The Wasatch Mountains, as part of the Middle Rocky Mountains Province, were uplifted as a fault block along the Wasatch Fault (Hintze, 1993).

The Wasatch Fault and its associated segments are part of an approximately 230-mile-long zone of active normal faulting collectively referred to as the Wasatch Fault Zone (WFZ), which has well-documented evidence of late Pleistocene and Holocene (though not historic) movement (movement within the past ~15,000 years; Lund, 1990; Hintze, 1993). The faults associated with the WFZ are almost all normal faults, exhibiting block movement down to the west and up to the east. The WFZ is contained within a greater area of active seismic activity known as the Intermountain Seismic Belt (ISB) which runs approximately north-south from northwestern Montana, along the Wasatch Front of Utah and southern Nevada and into northern Arizona. In terms of earthquake risk and potential associated damage, the ISB ranks only second in North America to the San Andreas Fault Zone in California (Stokes, 1987).

The WFZ consists of a series of ten segments of the Wasatch Fault that each display different characteristics and past movement and are believed to have movement independent of one

another (UGS, 1996). The WFZ and its corresponding segments and splays are seismically active and capable of producing earthquakes in excess of moment magnitude of 7.0. Within the past 6,000 years, 19 earthquakes capable of generating surface-fault-rupture have been experienced along various parts of the WFZ (UGS, 1996). Mapping indicates that the Jordan Narrows and Traverse Mountain North traces are in close proximity to the site. The Jordan Narrows trace runs northwest directly adjacent to the fault and the Traverse Mountain North fault connects to the Jordan Narrows trace just east of the site.

4.2 Surficial Site Geology from Literature

According to Biek (2005, see Figure A-2a and A-2b) the project area is mapped as Lacustrine gravel and sand deposits (map unit Qlgp), and Lacustrine sand and silt deposits (map unit Qlsp). The referenced mapping and unit descriptions are provided in the Figure A-3 in the appendices and are summarized below.

The Lacustrine gravel and sand deposits are Upper Pleistocene aged and is described as "Moderately to well-sorted, moderately to well-rounded, clast-supported, pebble to cobble gravel and pebbly sand; thin to thick bedded; typically interbedded with or laterally gradational to sand and silt facies; gastropods locally common in sand lenses; locally partly cemented with calcium carbonate; typically forms well-developed wave-cut or wave-built benches, bars and spits, including the classic spit at Point of the Mountain; elsewhere forms veneer that drapes over pre=existing topography; some shoreline deposits characterized by abundant subangular boulders derived from nearby slopes; intermediate shorelines are locally well developed on these unites; Qlgb deposited at and below highest Bonneville shoreline but above the Provo shoreline, and Qlgp deposited at and below the Provo shoreline; Qlgbp denotes deposits near Jordan Narrows that likely contain both transgressive (Bonneville) and regressive (Provo) lacustrine sand and lesser gravel; Qlgp deposits north of Steep Mountain commonly form a veneer 1 to 10 feet (0.3-3 m) thick over highly fractured orthoquartzite; 0 to about 300 feet (0-90 m) thick."

The Lacustrine sand and silt deposits are Upper Pleistocene aged and is described as "Fine- to coarse-grained lacustrine sand and silt with minor gravel; typically thick bedded and well sorted; gastropods locally common; grades downslope from sandy nearshore deposits to finer grained offshore deposits; locally concealed by loess veneer; intermediate shorelines typically poorly developed on this facies; Qlsb deposited at and below highest Bonneville shoreline but above the Prove shoreline, and Qlsp deposited at and below the Provo shoreline; Qlsbp denotes deposits north of Jordan Narros that likely contain both transgressive (Bonneville) and regressive (Provo) sediments; exposed thickness less than 40 feet (12m)."

4.3 Hydrology

The Federal Emergency Management Agency (FEMA) flood map that covers the subject property (FEMA, 2021) does not show any associated 1% (100-year) special flood hazard areas within or adjacent to the subject property.

Mapping by the Utah SGID (Utah AGRC, dataset updated in 2022 and accessed 2024) indicates that groundwater is anticipated to be present at a depth of greater than 30 feet. It should be noted that this mapping is at a regional scale and does not typically incorporate relatively acute grade changes like those present at this site. No seeps or springs are known to be present on or near the subject property.

4.4 Geologic Hazards from Literature

Based on a review of the mapping provided by McDonald (2018), the project area is not currently located in a Surface Fault Rupture special study area. Proximate faults and special study areas are shown in Figure A-5.

4.4.1 Surface Fault Rupture

Based on a review of the mapping provided by the Utah Geologic Hazards Portal (UGS 2021), the project area is not currently located in a Surface Fault Rupture special study area. Biek (2005) indicated the Jordan Narrows fault located to the north and east of the site. As discussed in Section 3.2, the fault is not considered an active fault and has no evidence of faulting within the past 22,000 years. Therefore, surface fault rupture hazard is not anticipated to adversely affect the project.

4.4.2 Strong Ground Motions

The entire property is subject to earthquake-related ground shaking from a large earthquake generated along the active Wasatch Fault. Given the distance proximity of the site to active faults, the ground shaking is expected to be severe/violent (UGS, 2023).

4.4.3 Liquefaction

Liquefaction potential maps considers soil and ground-water conditions combined with earthquake ground-shaking probabilities to induce liquefaction. Anderson (1994) maps the project site as *Very Low* liquefaction hazards. As a result, liquefaction hazard is not considered a risk to the project.

4.4.4 Geologic Radon

Based on mapping by Black (1993), the risk for indoor geologic radon is designated as *High*. This designation is defined as an "Areas in which geologic factors are generally favorable for indoor-radon hazards."

4.5 Seismicity

4.5.1 Seismic Site Class

To account for site effects, site coefficients that vary with the magnitude of spectral acceleration and Site Class are used. Site Class is a parameter that accounts for site amplification effects of soft soils and is based on the average shear wave velocity of the upper 100 feet (30 meters, Vs₃₀); site classifications are identified in Table 20.3-1 of ASCE 7-16 (ASCE 2017, 2018).

Based on the geophysical field program performed by IGES, the Vs_{30} of the site was measured to be approximately 1,785 feet per second (544 meters per second). Therefore, these subsurface materials classify as Site Class C. This aligns with previous reports performed by Gerhart Cole (2015) which also stated that the site class was C (bordering C/D classification boundary).

4.5.2 Design Spectrum

Following the criteria outlined in the 2021 International Building Code (IBC, 2021), spectral response at the site was evaluated for the risk-targeted *Maximum Considered Earthquake* (MCE_R). This represents accelerations in the direction of maximum horizontal response represented by a 5 percent damped acceleration response spectrum that equates to a 1 percent probability of building collapse within a 50-year period. The MCE_R spectral accelerations were determined based on the location of the site using the Structural Engineers Association of California online seismic map application (https://seismicmaps.org/) which incorporates seismic hazard maps depicting probabilistic ground motions and spectral response data developed for the United States by the U. S. Geological Survey. These maps have been incorporated into the IBC (IBC, 2021). The short- and long-period Design Spectral Response Accelerations for the site are presented below in Table 2and Table 3 and have also been included in Appendix C. The PGA_M is based on a uniform hazard approach and represents the probabilistic PGA with a 2 percent probability of exceedance in a 50-year period (2PE50) as opposed to the risk-targeted MCE_R, which is based on a uniform risk approach.

Mapped B S	ed B/C Boundary Site Coefficient Design Sa (g) Sa (g) (Site Class D Default)					
Ss	S1	Fa	Fv	PGA	S _{DS}	S _{D1}
1.171	0.424	1.2	1.5	0.519	0.937	0.424

Table 2:	Spectral Accelerations for MCER, Risk-Targeted Values (Str	uctural)
----------	--	----------

Notes:

1) T_L = 8

Source: https://seismicmaps.org/

Table 3: Spectral Accelerations for MCE, Geo-Mean Values (Geotechnical)

Mapped B/C Boundary PGA (g)	Site Coefficient F _{PGA} (Site Class C Default)	PGA _M (g)
0.519	1.2	0.623

Notes:

Source: https://seismicmaps.org/

5 Generalized Site Conditions

5.1 Existing Conditions

The property is located at approximately 15300 South and 3200 West in Herriman, Utah. The site is comprised of the existing Jordan Valley Water Treatment Plant Facilities. Additional information provided by Jordan Valley indicates that existing utilities at the site include underground and power, underground communications. Private utilities including buried sight lighting power are also likely present.

5.2 Subsurface Conditions

Generalized descriptions of the subsurface soils that were encountered during the explorations are provided in the following sections. Soil conditions likely vary between each discrete exploration location. Referenced depths are relative the existing grade at the time of the explorations unless otherwise noted.

5.2.1 Earth Materials

The native subsurface conditions observed at the project site generally consisted of coarsegrained soil. Layers of fine grained soils about 3 to 5 feet thick were observed in B-03 at depths of 15 to 23 feet below existing grade. Fine grained soils were tested to be hard lean clay with varying amounts of coarse-grained material or low plasticity silts. Coarse grained layers were tested to be dense to very dense silty or sand with occasional gravel.

5.2.2 Groundwater Conditions

Groundwater was not encountered in any explorations completed during this investigation. According to Utah SGID (Utah AGRC, dataset updated 2022 and accessed 2024) groundwater is expected to be at depths greater than 30 feet according to mappingr. Seasonal and annual variations in precipitation, irrigation, and rate of snowmelt will influence the depth-togroundwater throughout the project site. Proposed and future construction or alteration of hydrologic conditions in the area may alter the groundwater levels.

5.3 Environmental Conditions

Possible indications of impacted soil including odors or soil staining were not observed in the explorations performed as part of this investigation. A field or lab environmental characterization program was beyond the scope of this analysis. The absence of indications of environmental conditions does not serve as an evaluation or quantification of environmental conditions at the site.

5.4 Strength of Earth Material

Five consolidated drained direct shear tests was performed to further characterize and validate the strength of earth materials beyond the data obtained from field testing. The results of the testing are summarized in Table 4.

Borebole/Sample	Sample	nple		Effective Stress	
ID	Depth (feet)	Shear Testing Type ¹	с'ф' (psf) (degrees		
B-02	15.0	Consolidated Drained Direct Shear	367	40	
B-03	15.0	Consolidated Drained Direct Shear	1040	30	
B-04	15.0	Consolidated Drained Direct Shear	1757	40	
Bulk-01	0-2'	Consolidated Drained Direct Shear	1001	33	
Bulk-02	0-2'	Consolidated Drained Direct Shear	941	33	

Table 4:Summary of Shear Strength Testing Results

Notes:

1) See Appendix C for complete test results for further information

Source: Compiled by IGES in 2024

5.5 Soil Chemistry

Samples were tested for soil resistivity, soluble chloride and pH to evaluate the corrosion potential for ferrous metal in contact with onsite soil and tested for soluble sulfates to evaluate the potential for sulfate attack of cementitious concrete.

The results of the corrosion testing for soils along with the associated corrosion potential are presented in Table 5 and in Appendix C. The results are further discussed in Section 6.8.

Sample			Corrosion Potential Indicator							
Exploration/Sample ID	Depth (ft)	рН	Soluble Sulfate (ppm)	Soluble Chloride (ppm)	Electrical Resistivity (Ω-cm)					
B-01	2.5 & 5.0	8.6	<11	<11	7102					
B-03	10.0	8.9	16	<11	1621					
B-04	5.0	9.0ª	21	<12	1273					
Bulk-01	0-2	8.0	<11	<11	3424					
Bulk-02	0-2	8.1	<11	<11	2754					

Table 5: Corrosion Potential Indicator Testing Summary

Notes:

a) Outside of typically expected range

Source: Compiled by IGES in 2024

6 Design Recommendations

6.1 General Conclusions

Based on the results of the field observations, laboratory testing, engineering analysis, and literature review, the subsurface conditions are considered suitable for the proposed development provided that the recommendations presented in this report are incorporated into the design and construction of the project.

Supporting data upon which the following conclusions and recommendations are based have been presented in the previous sections of this report. The recommendations presented herein are governed by the physical properties of the earth materials encountered in the subsurface explorations. If subsurface conditions other than those described herein are encountered in conjunction with construction, and/or if design and layout changes are initiated, IGES must be informed so that our recommendations can be reviewed and revised as deemed necessary.

6.2 Design Considerations

The foundation systems for specific structures should be selected by the design team based on consideration of the project schedule, the relative costs, and the risks associated with each alternative. At these project sites, the risks primarily are associated with installation complication and variable subsurface conditions leading to design changes.

6.3 Shallow Foundation Recommendations

Shallow foundations often are the preferred foundation type because of lower construction costs and ease of construction. However, at sites where soil conditions are not able to support reasonably sized shallow foundations, where high vertical and lateral loads are anticipated, or when consolidation or liquefaction settlement is significant, deep foundations often are preferred. Several shallow foundation systems are discussed in the following sections.

6.3.1 Spread Footings

Conventional spread footings typically consist of relatively shallow reinforced concrete masses in various arrangements, to support loads imposed by a structure. Typical arrangements of shallow foundations include square, rectangular, or round isolated footings, continuous footings, and ring walls. They typically are the foundation of choice to support relatively modest loads, where small total and differential settlements will be tolerable. Construction costs of spread footings are relatively low given that specialty equipment is typically not needed for installation.

6.3.2 Bearing Capacity

6.3.2.1 Shallow Spread Footings

Shallow spread or continuous wall footings on competent native subgrade or a minimum of two feet of properly compacted granular structural fill overlying competent native earth materials, may be proportioned utilizing a maximum net allowable bearing pressure of 4,000 pounds per square foot (psf) for dead load plus live load conditions. The allowable bearing capacity may be increased by one-third for short-term loading (wind and seismic).

6.3.2.2 Mat Foundation

For a mat foundation constructed for the PAC, over a properly prepared subgrade consisting of a minimum of 2 feet of compacted structural fill, a maximum allowable bearing pressure of 1.8 ksf may be used for design. This may be increased by one-third for transient loading (e.g. wind, seismic). This reflects the maximum loading and structure size. Based on our interpretation of the subsurface profile, it is near or slightly below the existing effective stress at the foundation depth (i.e. fully compensated). Based on effective and total stress strength parameters from in situ and laboratory testing, it appears that the geotechnical strength of the soil will have a factor of safety greater than 2 as compared to the settlement-controlled case. As the soil profile is overconsolidated, changes in loading, should be communicated to and reviewed by IGES. Further analysis and reporting may be required.

6.3.3 Foundation Burial Depth and Size

Each conventional foundation exposed to the full effects of frost should be established at a minimum depth of 30 inches below the lowest adjacent final grade. Interior footings, not subjected to the full effects of frost (i.e., a continuously heated structure), may be established at higher elevations, however, a minimum depth of embedment of 18 inches is recommended for confinement purposes. The minimum recommended footing width is 20 inches for continuous footings and 30 inches for isolated spread footings. The maximum recommended footing width is 4 feet for continuous footings and 7 feet for isolated spread footings. Larger sizes may be permitted but should be reviewed by IGES and accepted in writing.

6.3.4 Sliding Resistance

If the foundation will be constructed on native sand, it is anticipated that sliding resistance will develop from the friction between the structure base and foundation soil and will be proportional to the normal force. The following values can be utilized to calculate the ultimate sliding resistance. An appropriate factor of safety (or resistance factor) against sliding should be applied to the resistance. The values presented in Table 6 are for cast in place footings. If precast elements are proposed to be utilized, consideration should be given to reducing the sliding coefficient to reflect the smoother nature of the interface.

Material at Base of Foundation	Static Friction Coefficient	Seismic Friction Coefficient		
Native Silty Sand ¹	0.35	0.23		
Minimum 1 foot Structural Fill ¹	0.45	0.30		

Table 6: Spread Footing Sliding Resistance

Notes:

1) Neglect adhesion

Source: Compiled by IGES in 2024

6.4 Settlement

Based on the subsurface soil profile, settlement of the structure is anticipated to only be elastic, immediate settlement that occurs as loads are applied. Long term and dynamic settlement were not considered an issue for the proposed construction since the native soils primarily consisted of very dense, coarse grained material that is not expected to be saturated by the groundwater.

6.4.1 Immediate Settlement

Immediate settlement was evaluated using SPT-based methods for calculating settlement of shallow foundation within sands. The methods used included those detailed by Meyerhof (1965) and Burland and Burbidge (1985). Both methods are based on the elasticity of sands and involve the average energy-corrected SPT blow counts (N_{60}) for the appropriate depths. The maximum settlement calculated for immediate settlement was less than 0.1 inches.

6.4.2 Dynamic Settlement

Dynamic settlement (or seismically-induced settlement) consists of dry dynamic settlement of unsaturated soils (above groundwater) and liquefaction-induced settlement (below groundwater). During a strong seismic event, dynamic settlement can occur within loose to moderately dense sandy soil due to reduction in volume during, and shortly after a seismic event. Settlement caused by ground shaking is often non-uniformly distributed, which can result in differential settlement. The project area is located in an area of "very low" risk for liquefaction and the groundwater is expected to be greater than 30 feet below the existing grade. Native soils at the site were also relatively dense. Therefore, dynamic settlement is not a concern and was not evaluated.

6.4.3 Modulus of Subgrade Reaction

Based on our understanding of the structures, the PAC silos foundation will consist of a reinforced structural mat. The modulus of subgrade reaction is a conceptual load-deflection property commonly used to simplify mat design and strip footing design. The value is constructed based on anticipated loading, size of the mat, stiffness of mat, soil type, and estimated soil deflection. In absence of field plate load testing, the modulus of subgrade reaction was based on field and laboratory test results and observed soil types. Based on the subsurface and foundation subgrade conditions as detailed in this report, a representative **modulus of subgrade reaction of 400 psi per inch (pci)** may be used for design of the mat. Consideration may be given to doubling the value along the edges of the mat if the mat is uniformly loaded with minimal column loads. The modulus of subgrade reaction should be appropriately modified based on the foundation size and stiffness.

6.4.4 Mat/Slab Detailing

To minimize settlement and cracking of slabs, and to aid in drainage beneath the concrete floor slabs, all concrete slabs should be founded on a minimum 4-inch layer of compacted gravel overlying properly prepared subgrade. The gravel should consist of free-draining gravel (1-inch max), or road base with a ¾-inch maximum particle size and no more than 5 percent passing the No. 200 mesh sieve. The layer should be compacted to at least 95 percent of the MDD as determined by ASTM D-1557.

All concrete slabs should be designed to minimize cracking as a result of shrinkage. Consideration should be given to reinforcing the slab with a welded wire fabric, re-bar, or fibermesh. Slab reinforcement should be designed by the structural engineer; however, as a minimum, slab reinforcement should consist of $4'' \times 4''$ W2.9×W2.9 welded wire mesh within the middle third of the slab. We recommend that concrete be tested to assess that the slump and/or air content is in compliance with the plans and specifications. We recommend that concrete be placed in general accordance with the requirements of the American Concrete Institute (ACI).

A moisture barrier (vapor retarder) consisting of 10-mil thick Visqueen (or equivalent) plastic sheeting should be placed below slabs-on-grade where moisture-sensitive floor coverings or equipment is planned. Prior to placing this moisture barrier, any objects that could puncture it, such as protruding gravel or rocks, should be removed from the building pad. Alternatively, the subgrade may be covered with 2 inches of clean sand, which will serve to minimize punctures through the Visqueen.

Our experience indicates that use of reinforcement in slabs and foundations can generally reduce the potential for drying and shrinkage cracking. However, some cracking can be expected as the concrete cures. Minor cracking is considered normal; however, it is often aggravated by a high water/cement ratio, high concrete temperature at the time of placement, small nominal

aggregate size, and rapid moisture loss due to hot, dry, and/or windy weather conditions during placement and curing. Cracking due to temperature and moisture fluctuations can also be expected. The use of low slump concrete can reduce the potential for shrinkage cracking; saw cuts in the concrete at strategic locations can help to control and reduce undesirable shrinkage cracks.

6.5 Lateral Support

Some of the proposed structures will have a below grade components requiring lateral forces to be considered in the design. Lateral pressure coefficients are presented for native material and structural fill. Appropriate earth pressure parameters should be selected based on the thickness of the backfill against wall and the type of movement expected of the wall. If structural fill parameters are to be utilized, the width of the structural backfill must be, at a minimum, equal to the buried height of the wall. If the foundation walls are to be restrained from lateral movement (i.e. braced at the bottom and top), or if the structure is movement sensitive, it is recommended that at-rest earth pressures be used for design. Mobilization of active earth pressures relatively dense cohesionless soil require horizontal deflections of at the top of the wall on the order of 0.02H (2 percent of the buried height of the wall). Predominantly cohesive materials require much larger, perhaps 5 to 10 times) displacements to fully mobilize active resistance but displacement required to fully mobilize passive resistance are comparable to those for cohesionless soil.

For seismic analyses, the *active* and *passive* earth pressure coefficients (K_{ae} & K_{pe} respectively) are based on the Mononobe-Okabe pseudo-static (M-O) approach (Mononobe and Matsuo 1929, Okabe 1926). The M-O approach accounts for the dynamic horizontal thrust produced by ground motion and the static thrust component. Hence, for seismic analysis the static and seismic values reported in Table 7 do not need to be added together, the seismic value alone can be used. Based on the information presented in Mononobe and Matsuo (1929) and Okabe (1926) along with results from more recent information presented in Lew et al. (2010) and Mikola and Sitar (2013), the dynamic earth pressure is approximated as a triangle with stress increasing with depth. The resultant may be applied at $\frac{1}{3}$ of the buried wall height measured from the base of the wall (similar to static earth pressures).

Appropriate equivalent fluid densities should be used with regards to the location of the water table in various design cases. Hydrostatic pressure must be added where applicable. Surcharge loading should be added where applicable. If the ground conditions slope steeper than 10 horizontals to 1 vertical (10H:1V), or where surcharges are present within a horizontal distance equal to the wall system height (total height for tiered systems), global stability should be addressed as part of the wall design.

If removal of material in passive zone is possible (e.g. utilities, pavement section, scour) passive resistance should be neglected. Similarly, passive resistance is typically neglected for portions of the passive zone susceptible to frost action or volumetric change due to fluctuating groundwater levels. If passive resistance is calculated in conjunction with frictional resistance along the base of the structure, the passive resistance should be reduced by at least ½. Over- or uneven compaction of backfill against wall may impart excessive pressures of the wall and should be avoided.

Ultimate lateral earth pressures acting against vertical walls with level backfill may be computed from the equivalent fluid densities. The recommended lateral pressure coefficients are presented in Table 7.

		Total Uni (p	it Weight cf)	Earth Pressure Coefficient						
Material	Load Case	Above	Below	Ad	tive	Pa	At-Rest			
		Water Table	Water Table ^B	Static ^{1,3}	Static ^{1,3} Seismic ^{1,3}		Static ^{1,3} Seismic ^{2,4}			
Native Silty Sand	Drained	37.0	16.2	0.33	0.65	3.00	2.51	0.50		
Structural Fill ^B	Drained	36.9	17.7	0.31	0.49	3.25	2.75	0.47		

Table 7: Lateral Pressure Coefficients

Notes:

- A) Includes water weight component and pressure
- B) Assumed, should be modified based on applicable compacted, in-place unit weight and moisture content

Loading Profile

- 1) Triangular Distribution (stress increasing with depth)
- 2) Uniform Distribution

Height of Action measured from Base of Wall

3) Height of Wall divided by 3

Source: Compiled by IGES in 2024

6.6 Pavement recommendations

6.6.1 Pavement Design

Flexible pavement sections were analyzed for proposed pavement for the chlorine building. Based on correspondence with the project civil engineer, roadways were assumed to have minimal heavyweight vehicles and consist primarily of passenger cars resulting in targets of approximately 1,442,000 flexible and 1,381,000 rigid equivalent single axel loadings (ESALs) over a 20-year design life. The pavement section was analyzed using the pavement design software WinPAS 12 from the American Concrete Pavement Association which uses the AASHTO 1993 flexible pavement design methodology. The parameters utilized are presented in Table 8. The recommended pavement sections are presented in Table 9.

Analysis Parameter	Hot Mix Asphalt					
Initial Serviceability	4.2					
Terminal Serviceability	1.5					
Target Reliability (percent)	50.0					
Calculated Reliability (percent)	98.29					
Standard Deviation	0.45					
Subgrade Resilient Modulus (psi)	~ 23,413					
Design Life (years)	20					

Table 8:Summary of Pavement Analysis

Notes:

Source: Compiled by IGES in 2024

The hot mix asphalt (or concrete) and untreated base course are predicted to accommodate the assumed loading of much of the near-surface subgrade soil at the site is characterized as coarse grained and is considered suitable to re-use as engineered fill. In general, materials should have less than 25% passing the #200 sieve to be considered non frost susceptible. The recommended pavement section described in Table 9 can be constructed directly over native soils/engineered fill. Granular borrow may be imported if needed for grading purposes, but is not needed as part of the pavement section.

Table 9:Summary of Pavement Sections

	Minimum Layer Thickness (inches)							
Pavement Usage	Fle	xible1						
	Hot Mix Asphalt	Untreated Base Course						
Chlorine Building Roadway	4	8						
Notes:								

Source: Compiled by IGES in 2024

6.6.2 Pavement Materials

UTBC (roadbase) should be a well graded granular material, with a minimum AASHTO A-1 classification and minimum CBR of 50. Asphalt has been assumed to be a high stability plant mix and should be compacted to a minimum of 96 percent of the Marshall maximum density before excessive cooling takes place. All materials and processes should conform to applicable local requirements where more stringent.

6.7 Moisture Protection and Drainage

Moisture should not be allowed to infiltrate into the soils in the vicinity of the foundations. Design strategies to minimize ponding and infiltration near the structures should be implemented. To this end, we recommend the following:

Desert or Xeriscape landscaping should be considered within 5 feet of foundations.

Rain gutters should be installed around the entire structure to capture and direct all roof runoff a minimum of 10 feet away from structures.

Irrigation valves should be placed a minimum of 5 feet from foundations.

The ground surface within 10 feet of structures should be constructed so as to slope a minimum of five percent away from the structures.

Pavement sections should be constructed to divert surface water away from the pavement into storm drains.

Parking strips and roadway shoulder areas should be constructed to prevent infiltration of water into the areas surrounding pavement.

6.8 Soil Chemistry

Limited testing to characterize the corrosion potential for various soil types at the site was performed. A summary of typical indicators for a soil's corrosion potential to concrete and metals is presented in the tables below.

Corrosion Potential	Soluble Sulfate (ppm)	Soluble Chlorides (ppm)	Electrical Resistivity (Ω-cm)
Low	0-150	0-200	> 30,000
Mild			30,000 - 10,000
Moderate	150 – 1,000	200 – 700	10,000 - 2,000
Severe	1,000 – 2,000	700 – 1,500	2,000 – 500
Very Severe	> 2,000	> 1,500	< 500

Table 10: Sulfate Based Corrosion Potential Indicator for Concrete

Notes:

1) pH values less than 5 or greater than 9 are outside range typically expected in soils.

Source: Compiled by IGES in 2022

In addition to the ranges presented, soil with a pH greater than 9 or less than 5 may indicate a problem soil in regard to contact with various construction materials.

Based on limited testing, site soils exhibit a low potential for sulfate attack to concrete and a low potential for chloride attack to steel, while resistivity testing results indicated that the soils at the site are moderately to severely corrosive to steel. Corrosion potential indicators are summarized in Table 11.

Corrosion protection based on the above results should be considered for any buried steel elements of the proposed project including the use of specialized coatings and sacrificial steel thicknesses depending on the nature and criticality of the specific element. Designers of structures with steel reinforcement should consider the corrosive nature of site soils in design. Where it is not practicable to minimize the use of buried steel, we recommend that a qualified corrosion engineer be consulted for any metals that are to be embedded at the site.

Sample	е	Corrosion Potential							
Exploration	Depth (ft)	pH Soluble S Sulfate C		Soluble Chloride	Electrical Resistivity				
B-01	2.5 & 5.0	Within typically expected range	Low	Low	Moderate				
B-03 10.0		Within typically expected range	Low	Low	Severe				
B-04	5.0	Within typically expected range	Low	Low	Severe				
Bulk-01 0-2		Within typically expected range	Low	Low	Moderate				
Bulk-02	0-2	Within typically expected range	Low	Low	Moderate				

Table 11: Corrosion Potential Indicator Testing Summary

Notes:

Source: Compiled by IGES in 2024

7 Construction Recommendations

7.1 Earthwork

7.1.1 Foundation Preparation

Based on our field observations and considering the presence of relatively competent native earth materials, we recommend that the footings for the proposed structures be founded on competent native subgrade extending below any undocumented fill (if present).

Where soft, loose, or otherwise deleterious earth materials such as undocumented fill are exposed on the foundation subgrade, IGES recommends a minimum over-excavation of two feet for each footing and replacement with structural fill, such that each foundation of the structure is underlain by a relatively uniform fill layer (fill/native transition zones are not allowed). Alternatively, the foundations may be extended such that all foundations bear directly on competent native earth materials. We recommend that IGES review the foundation subgrade prior to the placement of structural fill, steel or concrete, to identify the competent native earth materials as well as unsuitable soils or transition zones.

7.1.2 General Site Preparation and Grading

Following rough grading of foundation areas, the exposed subgrade should be reviewed by trained personnel working under professional geotechnical engineer familiar with the recommendations of this report. Excavations should be performed in a manner that limits disturbance to the subgrade. Construction traffic should not be allowed on any unstabilized, soft, pumping or loose subgrade. Unsuitable material such as; frozen soils, construction debris or waste, soils containing organics or debris laden fill should be removed in their entirety and replaced with structural fill in accordance with the recommendations of this report. Stabilization of soft subgrade may be performed by utilization of an approved separation geotextile and a bridging process approved by the engineer to facilitate a stable working surface.

7.1.3 Soft Soil Stabilization

Although not anticipated at this site, if encountered subgrade conditions are poor or deteriorate from exposure, subgrade stabilization can be accomplished by over excavating a minimum of 12 inches and/or placing a nonwoven geotextile (minimum weight 8 oz) over the soft subgrade and up the sidewalls of the trench enough to eventually encase the depth of stabilization material (e.g., the thickness of the stabilization material plus 2/3 of the trench width for each sidewall). Adjacent panels of geotextile should be overlapped a minimum of 18 inches along the width of the trench, or as recommended by the manufacturer. The geotextile should then be covered with a minimum of 12 inches of crushed, angular ³/₄--to 4-inch diameter drain rock to the base elevation of any required engineered fill. The geotextile can then be laid atop the stabilization

rock and overlapped (transverse to sidewalls, fully encasing the rock) prior to placing and compacting engineered fill.

Alternatively, stabilization of soft or pumping subgrade (if necessary) can be accomplished using a clean, coarse, angular material worked into the soft subgrade. We recommend the material consist of crushed stone between 3 and 6 inches in nominal diameter. The stabilization material should be worked (pushed) into the soft subgrade soils until a relatively firm and unyielding surface is established. Once a relatively firm and unyielding surface is achieved, the area may be brought to final pipe subgrade using stabilization rock or pipe bedding material. Other earth materials not meeting aforementioned criteria may also be suitable; however, such material should be evaluated on a case-by-case basis and should be approved by IGES prior to use. The area should be inspected by a soils technician familiar with the requirements of this report to evaluate whether a firm working surface has been achieved and that soft/pumping soils have been bridged to the greatest extent reasonably possible based on existing subsurface conditions. We recommend that an IGES representative be present during this subgrade evaluation.

7.1.4 Structural Fill and Compaction

7.1.4.1 Materials

Fill placed for the support of structures or flatwork should consist of structural fill. Structural fill may consist of approved onsite soils or an approved imported granular soil. Fill materials should be accepted by the Geotechnical Engineer for the specific use of the fill. Imported structural fill should conform with the following requirements:

- Granular, well-graded material with a maximum particle size of 4 inches and a fines content between 5 and 15 percent when testing in accordance with ASTM D6913;
- Material having liquid limit less than 20 and a plasticity index less than 10 when tested in accordance with ASTM D4318;
- Hard, durable particles of stone or gravel; or crushed to the specific sized and gradations; free from organic matter, clay chunks, asphalt, construction debris and other deleterious material.
- Non-corrosive to metals, concrete or other building materials;
- Free of unsuitable material as described herein.

Imported fill material not meeting the aforementioned criteria may be acceptable; alternative fill materials must be reviewed and approved in writing by IGES prior to importing. Fill for material utilized within the pavement section should conform to all applicable materials and construction standards and specifications.

Capillary barrier material or drainage course under floor slabs should consist of hard, durable, clean gravel or crushed rock, with a maximum size of 1-inch containing less than 5 percent material passing the No. 200 sieve.

7.1.4.2 Placement

Structural fill material shall be placed in maximum 8-inch loose lifts. Thinner lifts may be required to achieve adequate compaction depending on the equipment and methods chosen by the contractor. All fill should be placed on a horizontal plane unless otherwise approved by the Geotechnical Engineer. Fill placed on existing fill or slopes steeper than four horizontal to one vertical (4H:1V) should be keyed and benched into firm native soil or properly compacted fill. Keying and benching can be conducted simultaneously with placement and compaction of engineered fill. Width of the benches should be determined based on the necessary width for compaction equipment to adequately fit on the bench, and the corresponding key height is based on width needed Permanent fill slopes should be no steeper than 2.5:1.

The width of granular structural fill required at the bottom of footing excavations should be equal to the width of the footing (B) plus one lateral foot for each foot of fill thickness (H) below the footing plus 6 inches on either side of the footing (i.e., minimum width of structural fill is equal to 2H+6 inches+6 inches+B). See Figure 1 below for a detail showing minimum fill width.

Backfill should be placed in even lifts on both sides of foundation walls to prevent excessive pressure on one side. Brace unsupported foundation walls, thoroughly before backfilling and leave bracing in place until supporting floors are in place.

Figure 1 - Minimum Width of Structural Fill

Material should be mechanically compacted to the required maximum dry density and optimum moisture content as indicated in Table 12. Compaction by water injection should not be permitted. Compaction dry of optimum is discouraged.

Backfill Area ¹	Percent of Maximum Dry Density ²	Moisture Content at Time of Compaction		
Fill beneath footings				
Fill Beneath pile cap				
Fill beneath floor slabs	95.0	Optimum ² to + 2 percent of		
Interior utility trench				
Pavement areas		optimum		
Foundation wall	00.0	_		
Landscaped area	90.0			

Table 12: Summary of Compaction Requirements

Notes:

- Required compaction shall be determined considering proposed construction above fill (e.g. foundation walls backfilled beneath a proposed pavement area must be compacted to pavement area specification). Fill that will remain in place following surcharge should be compacted to the appropriate requirement of its future use.
- 2) As determined by ASTM D1557
- 3) Specification from authorities having precedence should be adhered to where more stringent.

Source: Compiled by IGES in 2024

7.1.5 Reuse of Onsite Soils

Shallow site soils were observed to be primarily consist of coarse-grained soil with a high fines content. Normally soils with high fines content are not suitable for reuse, however due to the relatively low plasticity of the soils, moisture conditioning will likely not be as problematic as with other fine-grained soils. These soils are considered suitable or practical for reuse onsite as grading or structural fill. All applicable regulations should be strictly adhered to regarding treatment and disposal of spoils generated by construction activities if spoils are to be disposed of.

7.1.6 Oversized Materials

Oversized material was not observed during the field exploration but has been encountered in previous investigations and construction in other areas of the site. If oversized material is encountered during construction, it may be included in embankment fill or fill slopes, at the discretion of the geotechnical engineer, if they are placed in a manner that will not result in voids, loose soils, honeycombing or uncompacted soils. Any material larger than 1 foot diameter should be scalped and removed from materials used in embankment fills or fill slopes. These oversized particles should not be placed within 5 feet of the top of any embankment or within 5 feet of the outer slope of the embankment. If oversized particles are used in embankment fill as discussed above, it is imperative that the contractor place and compact fill around oversized particles in accordance with the recommendations presented in the previous paragraphs. It is likely that the contractor will be need to compact soil in 4 to 6-inch lifts with small compaction equipment within a 2-foot radius of the oversized particle.

7.1.7 Utility Trench Backfill

Utility bedding and backfill should be specified to appropriately support the utility by the designer. Bedding should be in complete contact with the utility as required. It is recommended that bedding material has a Sand Equivalent (SE) of 30 or greater. Pipe bedding may be waterdensified in-place if the subgrade or trench stability is not adversely impacted. Native earth materials can be used as backfill over the pipe bedding zone. In each case the utility bedding, utility zone backfill (immediately above the bedding) and remaining trench backfill should meet the design criteria of the manufacturer. Specifications from governing authorities having their own precedence for backfill and compaction should be followed where they are more stringent.

7.1.8 Excavation Stability

The contractor is responsible for site safety, including all temporary slopes and trenches excavated at the site and design of any required temporary shoring. The contractor is responsible for providing the competent person required by Occupational Safety and Health Administration (OSHA) standards to evaluate soil conditions and regularly perform excavation inspections. Sloping or benching for excavations greater than 5 feet deep shall comply with OSHA default requirements or be designed by a Professional Engineer registered in the State of Utah. The soils on site are anticipated to be Type B soils, which allow for a maximum allowable slope of 1:1 for excavations less than 20 feet. The stability of any excavation deeper than 20 feet should be evaluated by IGES or a qualified geotechnical engineer.

7.2 Monitoring of Existing Infrastructure

Structures sensitive to settlement resulting from dewatering or possible vibrations from the installation of shoring should be identified prior to construction. A structural and geotechnical instrumentation monitoring program should be implemented prior to and during construction to

monitor impacts to existing infrastructure. Instrumentation for temporary structures such as shoring should also be utilized. Instrumentation may include, but is not limited to; inclinometers, vibration monitoring, automated or manual surveying, crack meters and groundwater monitoring.

7.3 Construction Monitoring

It is recommended that the project budget include provisions for the cost for independent construction monitoring of the earthwork and foundation construction by a qualified engineering firm retained by the appropriate party to review conformance of construction with the recommendations of the project geotechnical evaluation, as well as the project plans and specifications.

8 Closure

8.1 Limitations

The concept of risk is a significant consideration of geotechnical analyses. The analytical means and methods used in performing geotechnical analyses and development of resulting recommendations do not constitute an exact science. Analytical tools used by geotechnical engineers are based on limited data, empirical correlations, engineering judgment, and experience. As such, the solutions and resulting conclusions and recommendations presented in this report cannot be considered risk-free and constitute IGES's best professional opinions and recommendations based on the available data and other design information available at the time they were developed. IGES has developed the preceding analyses, recommendations and opinions, at a minimum, in accordance with generally accepted professional geotechnical engineering practices and care being exercised in the project area at the time our services were performed. No warrantees, guarantees or other representations are made.

The information contained in this report is based on limited field data and understanding of the project. If any conditions are encountered at this site that are different from those described in this report, IGES must be immediately notified so that we may make any necessary revisions to recommendations and opinions contained in this report. In addition, if the scope of the proposed construction or grading changes from those described in this report, our firm must also be notified.

This report was prepared for our client's exclusive use on the project identified in the foregoing. Use of the data, recommendations, opinions, or design information contained herein for any other project or development of the site not as specifically described in this report is at the user's sole risk and without the approval of IGES, Inc. It is the client's responsibility to see that all parties to the project including the designer, contractor, subcontractors, etc. are made aware of this report in its entirety.

8.2 Additional Services

We recommend that IGES be retained to review the final design plans, grading plans and specifications to determine if our engineering recommendations have been properly incorporated in the project development documents. We also recommend that IGES be retained to evaluate construction performance and other geotechnical aspects of the projects as construction initiates, continues and progresses through its completion.

9 References

- American Society of Civil Engineers [ASCE], 2017, ASCE Standard 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures.
- ———, 2018, ASCE Standard 7-16 Minimum Design Loads and Associated Criteria for Buildings and Other Structures Supplement 1.
- Anderson, L. R., Keaton, J. R., Spitzley, J. E., Allen, A. C., 1994, Liquefaction Potential Map for Salt Lake County, Utah Complete Technical Report, Utah Geological Survey Contract Report 94-9, Plate 4B.
- Black, B. D., 1993, The Radon-Hazard-Potential Map of Utah, Utah Geological Survey, Map 149.
- Dames & Moore, 1985, Draft Report Supplemental Geotechnical, Geoseismic and Seismic Risk Study Proposed Expansion to 180 Million Gallon Per Day (MGD) Capacity Jordan Valley Water Purification Plant, Bluffdale, Utah, Job No. 05493-024-06.
- Department of the Army Corps of Engineers, 1984, Engineering Manual No. 1110-3-141 Engineering and Design Airfield Flexible Pavement Mobilization Construction. <u>https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM</u> <u>1110-3-141.pdf?ver=fllzbabON-rRLlwzTqWeqg%3d%3d</u>
- Fang, H. Y., 1991, Foundation Engineering Handbook, Second Addition.
- Federal Emergency Management Agency (FEMA), 2021, Map Number 49035C0577H, effective date November 19, 2021. <u>https://msc.fema.gov/portal/home</u>
- Gerhart Cole, Inc., 2014, Geotechnical Study 3200 West Access Road / JVWCD Asphalt Improvements, April 2014, Project Number 13GCI375.
- ———, 2015, Geotechnical and Geological Studies JVWCD New Finished Water Reservoir, May 20, 2015, Project Number 14GCI500.
- ———, 2020, Technical Memorandum Jordan Valley Water Treatment Plant Upgrades, February 26, 2020, Job Number 19-1225.
- ———, 2022, Technical Memorandum Jordan Valley Water Treatment Plan Sedimentation Basins, November 29, 2022, Job Number 22-1552.
- Hintze, L. F. 1980. Geologic Map of Utah: Utah Geological and Mineral Survey Map-A-1. scale 1:500,000.
- ———. 1993. Geologic History of Utah. Brigham Young University Studies. Special Publication 7.

Howard, Amster K., 2015, Pipeline Installation 2.0, Relativity Publishing

- IGES, 2009, Preliminary Geotechnical Investigation, Jordan Valley Water Treatment Plant Chlorine Dioxide Building, Bluffdale, Utah, August 21, 2009, Job No. 00823-005.
- IGES, 2024, Seismic Velocity Survey (V_{s100}) Bluffdale, Utah, January 5, 2024

International Building Code [IBC], 2021, International Code Council, Inc.

- Lew, M., Sitar, N., Atik, L.A., Pourzanjani, M., and Hudson, M.B., 2010, "Seismic Earth Pressures on Deep Building Basements", SEAOC 2010 Convention Proceedings, Los Angeles, CA.
- Mikola, R., G., Sitar, N., 2013, "Seismic Earth Pressures on Retaining Structures in Cohesionless Soils." Report No. UCB GT 13-01, March 2013
- Milligan, M.R., 2000, How was Utah's topography formed? Utah Geological Survey, Survey Notes, v. 32, no.1, pp. 10-11.
- Mononobe, N. and Matsuo, H., 1929, "On the determination of earth pressures during earthquakes," in Proceedings of the World Engineering Congress, p. 9, Tokyo, Japan.
- Okabe, S., 1926, "General theory of earth pressures," Journal of the Japan Society of Civil Engineering, vol. 12, no. 1
- Oviatt, C.G., 2015, Chronology of Lake Bonneville, 30,000 to 10,000 yr BP: Quaternary Science Reviews, 110, pp. 166-171.
- Sage Earth Sciences, 2021, In-situ shear wave velocity test VS100 Midvale, UT, unpublished consultant's report, April 8, 2021.
- Salgado, R. 2008. The Engineering of Foundations. McGraw Hill.
- Seed, H.B. and Whitman, R.V.. 1970. "Design of Earth Retaining Structures for Dynamic Loads." ASCE Specialty Conference, Lateral Stresses in the Ground and Design of Earth Retaining Structures. Cornell University, Ithaca, NY., 103-147.
- Schaefer, Vernon R., Ryan R. Berg, James G. Collin, Barry R. Christopher, Jerome A. DiMaggio, George M. Filz, Donald A. Bruce, and Dinesh Ayala, 2017a, "Ground Modification Methods Reference Manual - Volume I [FHWA-NHI-16-027]." In Geotechnical Engineering Circular No. 13, I:386. Woodbury, MN: United States Department of Transportation and Federal Highway Administration.
- ———, 2017b, "Ground Modification Methods Reference Manual Volume II [FHWA-NHI-16-028]." In Geotechnical Engineering Circular No. 13, 2:542. Woodbury, MN: United States Department of Transportation and Federal Highway Administration.
- United States Geological Survey (USGS), Unified Hazard Tool, https://earthquake.usgs.gov/hazards/interactive/. Accessed April 2021.

- United States Department of Agriculture (USDA). 2021. Web Soil Survey, Soil Survey Area: Salt Lake Area, Utah, Survey Area Data: Version 13. June 8, 2020. https://websoilsurvey.sc.egov.usda.gov/WssProduct/onldeupobefr0cm4wvbxbeuv/onld eupobefr0cm4wvbxbeuv/20210430_08411808589_22_Map_Unit_Description_Parleys_l oam_0_to_4_percent_slopes--Salt_Lake_Area_Utah.pdf
- Utah Automated Geographic Reference Center [AGRC]. State Geographic Information Database. https://opendata.gis.utah.gov/datasets/utah-shallow-ground-water?geometry=-129.193%2C36.996%2C-93.903%2C42.001. Accessed December 2023.
- Utah Geological Survey, 1996, The Wasatch Fault: UGS Public Information Series 40, 17 p. https://ugspub.nr.utah.gov/publications/public_information/pi-40.pdf
- Utah Geologic Survey, 2019, Utah Quaternary Fault and Fold Database, https://geology.utah.gov/apps/qfaults/index.html.
- Utah Geological Survey, 2021, Geologic Hazards Mapping and Data Custom Report, sites specific report generated on 12/7/2023 from UGS website: <u>http://geology.utah.gov/apps/hazards/report</u>.
- Wood, J.H., 1973, "Earthquake-induced soil pressures on structures." California Institute of Technology, EERL 73-05

Appendix A

Prepared for Carollo Engineers Prepared By IGES, Inc.

Maps

MAP UNIT DESCRIPTIONS

Qigp Qigbp Qlgb

Lacustrine gravel and sand deposits (Upper Pleistocene) – Moderately to well-sorted, moderately to well-rounded, clast-supported, pebble to cobble gravel and pebbly sand; thin to thick bedded; typically interbedded with or laterally gradational to sand and silt facies; gastropods locally common in sandy lenses; locally partly cemented with calcium carbonate; typically forms well-developed wave-cut or wave-built benches, bars, and spits, including the classic spit at Point of the Mountain; elsewhere forms veneer that drapes over pre-existing topography; some shoreline deposits characterized by abundant subangular boulders derived from nearby slopes; intermediate shorelines are locally well developed on these units; Qlgb deposited at and below highest Bonneville shoreline but above the Provo shoreline, and Qlgp deposited at and below the Provo shoreline; Qlgbp denotes deposits near Jordan Narrows that likely contain both transgressive (Bonneville) and regressive (Provo) lacustrine sand and lesser gravel; Qlgp deposits north of Steep Mountain commonly form a veneer 1 to 10 feet (0.3-3 m) thick over highly fractured orthoquartzite; 0 to about 300 feet (0-90 m) thick.

Qisp Qisbp Qlsb

Lacustrine sand and silt deposits (Upper Pleistocene) – Fine- to coarse-grained lacustrine sand and silt with minor gravel; typically thick bedded and well sorted; gastropods locally common; grades downslope from sandy nearshore deposits to finer grained offshore deposits; locally concealed by loess veneer; intermediate shorelines typically poorly developed on this facies; QIsb deposited at and below highest Bonneville shoreline but above the Provo shoreline, and QIsp deposited at and below the Provo shoreline; QIsbp denotes deposits north of Jordan Narrows that likely contain both transgressive (Bonneville) and regressive (Provo) sediments; exposed thickness less than 40 feet (12 m).

Map Symbols

———— Contact, dashed where approximately located

------ Normal fault, dashed where approximately located, dotted where concealed and approximately located; query T. indicates uncertain presence; bar and ball on down-dropped side; arrow with number shows dip of fault 65 --- --- Normal fault inferred principally from gravity data; very approximately located; bar and ball on down-dropped side; also used for the inferred Cedar Valley tear fault ▲▲▲▲▲▲▲ Thrust fault, dashed where approximately located, dotted where concealed and approximately located; teeth on upper plate ----- Axial trace of anticline, dashed where approximately located, dotted where concealed and approximately located; arrow shows direction of plunge ----- Axial trace of overturned anticline, dashed where approximately located, dotted where concealed and approximately located; arrow shows direction of plunge ----- Axial trace of syncline, dashed where approximately located, dotted where concealed and approximately located Lake Bonneville shorelines - Major shorelines of the Bonneville lake cycle. Mapped at the top of the wave-cut platform, dashed where approximately located Highest shoreline of the Bonneville (transgressive) phase -R Other shorelines of the Bonneville phase - mostly transgressive -h-Highest shoreline of the Provo (regressive) phase -P-Other shorelines of the Provo phase - mostly regressive shorelines of the Provo phase, but may include some shorelines of the Bonneville (transgressive) phase 4800. Elevation (in feet) of selected Lake Bonneville shoreline feature: elevation determined photogrammetrically Crest of Lake Bonneville offshore bar or spit Erosional scarp within terraces along Jordan River ∖35 Strike and dip of inclined bedding (red symbols in the east Traverse Mountains indicate attitudes from J.E. Welsh, unpublished map, 1965; in the west Traverse Mountains red symbols indicate attitudes from Moore, 1973c) ×××××× Landslide scarp, hachures on down-dropped side ×30 Approximate strike and dip of inclined bedding ~ Approximate strike and dip direction of inclined bedding X Strike of vertical bedding (red symbols indicate attitudes from Moore, 1973c) Horizontal bedding (red symbol in east Traverse Mountains indicates attitude from J.E. Welsh, unpublished map, ⊕ 1965) ×30 Strike and dip of overturned bedding (red symbol in west Traverse Mountains indicates attitude from Moore, 1973c) Sand and gravel pit \boldsymbol{X} \mathbf{X} Quarry, cl = clay, no letter = crushed rock

Х

ノ

~ _____L32103-2 Shaft

Spring

Prospect, cl = clay, c = calcite, no letter = metals

Sample location and number (see table 1 for analytical data)

Area of colluvium (unmapped over shallow bedrock) locally exhibiting evidence of soil creep, northwest slope of Steep Mountain

FIGURE FIGURE	TECHNICAL INVESTIGATION DAN VALLEY WATER TREATMENT PLANT ER & CHEM FEED UPGRADE FFDALE, UTAH
	Project #: 00823-023 REGIONAL GEOLOGY MAP Copyright IGES Inc. 2023

Appendix B

Exploration Logs

Prepared for Carollo Engineers Prepared By IGES, Inc.

ſ	~					Jo	ordan Valle	ey Water Ti	reatment	t Plai	nt			B	-01	
	9	16.V. 10				15	305 S 3200 W, He	rriman 3200 W, H	erriman, UT 84	1065, US	SA			Page	e1of1	
Drillir	na Co	o.:	C	oneTec	Project No.: 00823-023 Remarks:											
Drille	er:		RE	B			Date Drilled:	12/19/202	3	-						
Loga	ied B	v:	R	Г			Boring Depth	: 40'	-							
Fauir	omen	t:	Fr	aste			Boring Elevati	ion: ~4772'								
Ham	mer 1	Type	<u>.</u> Δι				Coordinates:	40 47206	5 -111 9667	778						
1 Idini		ypc		ato			∇ Water Le		f Drilling: N	//		lavod	Waterle		N//	٨
Drillir	ng Me	etho	d: O	DEX			Cave-in At Tir	me Of Drilling:	N/A		elayed	Wate	r Observa	tion Date	e: N/A	`
										5	Sample	es	La	ab	Liquid Lin	nit 🔺
Depth (ft)	Elevation (ft)	Sample Graphic	% Recovery	Graphic Log	nscs	V	isual Classifica	ation and Rema	arks	Blow Counts	Uncorrected N-Value	NGO	Moisture Content (%)	% Fines	0 25 ● Plastic Lin 0 25 ● Moisture Coi 0 25	11 € 50 11 € 50 11 € 50
0-	4770		33	11110						5	37	51	-			
_		2		-/////	CL	dravel pr	AY , hard, dry, br esent	own, trace sand	and	14			-			
_		- ~	35			Silty SA	ND, very dense,	dry, grey, trace	 clay	20	50	69	5.8			
5-	4765		18			and grav	el present			50/5.5"						
_				i si		Silty SA	ND, very dense,	dry, grey, low re	covery				-			
_		- X	100		SM	Silty SAI	ND, very dense,	dry, grey, grave	up	36 32	62	86	-	13.8		
10 -	4760		=	ang		to 3/4 in	ches in diameter	r and angular		30	50 /	69	7			
_						No Reco	very									
_	-	-														
15	4755	-	33		GP	GRAVEL gravel up low reco	with Sand, very to 3/4 inches ir very	v dense, moist, n diameter and a	15.0 angular, 20.0	80/3"						
20-	4750		80			Silty SAI	ND with Gravel,	very dense, moi	st,	30	87	120	8.4	15.8		
_		-				grey, gra	vel up to 3/4 inc	ches in diameter	and	50/5.5"	1					
-	-	_				angular										
25-	4745	\sim	73	7.11		Silty SA	D with Gravel	verv dense drv		50/5.5"						
-	-	_				greyish b	prown, gravel up	to 3/8 inches in	diameter							
_		-		1		and angu	lar, coarse sand	l particles prese	nt							
30-	4740		-		SM		D with Gravel	vorv donco moi		37	50	69	-			
-	4/40	1				brown, q	ravel up to 3/8 in	nches in diamet	er and	\ <u>50/4"</u>	/					
	-	-				angular	•		25.0							
35 -	4705		55			Ciltur C A I	ID with Crovel	voru donce mei		50/5.5"						
_	4/35	<u>'</u>				brown, a	ravel up to 3/16	inches in diame	ter and							
_		-				fractured	l, trace clay pres	sent	40.0							
40-		_	67						40.0	50/3"/			6.7 /	ł		
_	4730	2		11.11.V		gravel ur	to 3/16 inches i	very dense, moi in diameter	ST, 43.0 /							
			I			End of Bo Encounte	pring @ 40.0 Feet red	t - No Groundwa	41:5_/ er							
Gra	phice	Lea	end													
·///	r	9					× /									
	//// c	L					\times	SS - Small Split Sp	oon					FIGL	JRE	
	<u>і</u>	м						Modified CA - Mo	dified California S	Sampler					1	
) [°]	141								ampiel				В-	1	
	G	P							-							

	Jordan Valley Water Treatment Plant								
ESV, 1998	15305 S 3200 W, Herriman 3200 W, Herriman, UT 84065, USA	Page 1 of 1							
Drilling Co.: ConeTec	Project No.: 00823-023 Remarks:								
Driller: RB	Date Drilled: 12/18/2023								
Logged By: RT	Boring Depth: 35'								
Equipment: Fraste	Boring Elevation: ~4773'								
Hammer Type: Auto	Coordinates: 40.472333, -111.967194								
Drilling Method: ODFX	∑ Water Level At Time Of Drilling: N/A ▼ Delayed W	ater Level: N/A							
	Cave-in At Time Of Drilling: N/A Delayed Water O	bservation Date: N/A							
	Samples	Lab Liquid Limit • 0 25 50							
Depth (ft) Elevation (ft) Sample Graphic % Recovery Graphic Log USCS	Visual Classification and Remarks	Woistrue Content 0 25 50 0 25 50 0 4 Moisture Content 0 25 50 0 25 50 0 4 Moisture Content 0 25 50 0 4 Moisture Content							
0	Poorly Graded SAND with Gravel, very dense, moist, brown, Gravel up to 3/4 inch in diameter and angular								
5 - 67	Silty SAND with Gravel very dense moist 25 65 90								
4765	brown, Gravel up to 3/4 inch in diameter and angular								
	10.0								
<u>4760</u>	Silty SAND, very dense, moist, brown, Gravel up to 3/4 inch in diameter and angular	8.5 17.1							
15	15.0	16.6							
4755	Silty SAND with Gravel, very dense, moist, reddish brown, Gravel up to 1 inch in diameter and angular								
20 SM	20.0								
<u>4750</u>	Silty SAND with Gravel, very dense, moist, brown, Coarse sand particles present								
	25.0								
	Silty SAND with Gravel, very dense, dry, brown, low recovery	6.9 17.6							
	30.0								
	Silty SAND with Gravel, very dense, moist, brown, low recovery								
	34.0								
-35	Refusal at 34.0 Feet - No Groundwater Encountered								
Graphics Legend		[]							
SD.		FIGURE							
SP SP	SS - Small Split Spoon	B-2							
J	Modined CA - Modined California Sampler								

ff	\leq	Jordan Valley Water Treatment Plant									B-03						
	_	17, 191				1530	15305 S 3200 W, Herriman 3200 W, Herriman, UT 84065, USA							Page 1 of 1			
Drilling	q Co.	:	Сс	oneTec	Project No.: 00823-023 Remarks:												
Driller	:		RE	3		Date Drilled: 12/18/2023											
Logge	ed By	:	R	Г		B	Boring Depth: 40'										
Equip	ment	:	Fr	aste		B	oring Elevat	ion: ~4768	ı								
Hamm	ner Ty	ype:	Αι	uto		С	oordinates:	40.472	2725, -111.	9671	51						
						Z	Z Water Le	evel At Tim	e Of Drillin	g: N/	A	D e	layed	Water Le	evel:	N/A	
Drilling	g Me	thoc	I: OI	DEX		С	ave-in At Ti	me Of Drilli	ng:	N/A	D	elayed	Water	Observa	ation Date	e: N/A	
											S	Sample	S	L	ab	 Liquid Limit 	
Depth (ft)	Elevation (ft)	Sample Graphic	% Recovery	Graphic Log	nscs	Visu	ual Classifica	ation and R	emarks		Blow Counts	Uncorrected N-Value	NGO	Moisture Content (%)	% Fines	0 25 50 Plastic Limit • 0 25 50 •Moisture Content• 0 25 50	
0	_ 4765 _					Topsoil: gra	ivel and sand,	, some dead	weeds		-						
5— — — —	_ 4760 _	\times	78			Silty SAND	, very dense,	moist, browi	n		24 37 50/5"	87	120				
10	_ 4755 _	\times	78		SM	Silty SAND, clay presen	, very dense, t	moist, browı	n, Trace		23 30 29	59	82	17.3	37.8		
15 — 	_ 4750 _		188		ML	Sandy SILT	', hard, moist,	brown		15.0	27 45 50/3"	72	100	19.8 19.7	66.9		
20-	_ 4745	\times	100		CL	Lean CLAY silt	, hard, moist,	brown, trace	e sand and	20.0	32 31 48	79	109				
25 — 	_ _ 4740 _	\times	89			Silty SAND fines preser	, very dense, nt, coarse sar	moist, browi nd particles j	n, trace present		28 45 42	87	120				
30- - - -	- _ 4735 _		94		SM	Silty SAND	, very dense,	moist, browi		30.0	31 52 50/5"	83	115	7.4	17.4		
35 — — — — —	- _ <u>4730</u> -	\times	59			Silty SAND sand partic	, very dense, les present, ti	moist, browi race gravel p	n, coarse present	10.0	41 50/5" 	50	69				
40-	- - 4725	\times	59			Silty SAND	, very dense,	moist, browi	n 4	41.5	50 50/5"	50	69				
	+ 723	<u> </u>				End of Borin Encountered	ng at 41.5 Feet d	t - No Ground	lwater	+0.0					1		
Grap	hics I sr	_ege	nd					SS - Small S	plit Spoon	ifornia 9	Sampler				FIGL	JRE 2	
		- L						Grab							D-	ა	

						Jo	ordan Valley		B-04								
EST. 1998						15	15305 S 3200 W, Herriman 3200 W, Herriman, UT 84065, USA								Page 1 of 1		
Drilling Co.: ConeTec							Project No.:	00823-023		R	emark	s:					
Driller: RB							Date Drilled:	12/19/2023		-							
Logged By: RT							Boring Depth:	-									
Equipment: Fraste							Boring Elevation	n: ~4767'									
Ham	mer 1	Гуре	e: Au	uto			Coordinates:	40.472688, -	111.9667 [,]	11							
D		a the a					Σ Water Leve	el At Time Of Dr	illing: N//	A	D e	layed	Water I	Level:	N/A		
Drinn	ig ivie	etho	a: OI	DEX			Cave-in At Time	e Of Drilling:	N/A	D	elayed	Wate	r Observ	vation Date	e: N/A		
											Samples			Lab			
		. <u>.</u>		hic Log	SCS							(%)		0 25 50			
(ft)	ff.	aph	/ery							Its	g		ent		0 25 50		
oth	ation	e G	eco/			V	sual Classification and Remarks		;	Cour	ect	00	onte	nes	0 25 50		
De	leva	du	% R	Grap						×	N-Col	ž	୍ର ପ୍ର	E %			
		S								B	Ľ		istu				
													δ				
0-	4765		67	11111	CI					3	28	39	-				
						Lean CLAY, very stiff, moist, brown, grass and \roots present in topsoil											
-		-				<u> </u>											
5-	4760		67			Silty SAN	ND. dense. moist. I	orown		18	48	66	-				
-		1								26							
10 -	-																
-	4755	-X	100	- 11 13		Silty SAM	ND, very dense, mo	oist, brown		26 28	67	93	18.3				
-		-								<u>39</u>	/						
15 -	4750		82							38	88	122	10.9	34.3	-		
-	- 4730		02							50/5" x		122	13.0	54.5			
-																	
20-	4745	\ge	86			Silty SAN	ID verv dense mo	oist brown		32	98	136					
_	- ·	-			SM					48 50/2"	1						
25 -																	
25	4740		106	-		Silty SAN	ND, very dense, mo	oist, brown, trace		21 37	87	120	27.8				
-						fine sanc	l particles present			\ <u>50/5</u> "_	/						
30-			122	-						22	50	60	-	40.0	-		
-	4735	-				Silty SAN	ND, very dense, mo	oist, brown, fine		<u>50/3"</u>			1	40.9			
_		-		a da antes de la competencia de la comp de la competencia de la de la competencia de la			tioles present										
35-	4720	\geq	133				D with Gravel Vo	ry danca maist		43	50	69	-				
-	4/30	1				brown, g	ravel up to 3/4 inc	h diameter and fra	actured	\ <u>50/3"</u>	/						
-	-	-															
40-	4725	\geq	109			Silty SAM	ND, hard, moist, br	own	41.5	37	50	69	19.1	23.5			
-	-								43.0								
						End of Bo Encounte	oring at 41.5 Feet - I red	No Groundwater									
-																	
Gra	phics	Leg	end				、 <i>、</i> ,										
SS - Small Split Spoon										FIGURE							
												B-/					
	5	SM						Modified CA - Modified	d California S	ampler				D-4	-		
1 1986	a-1-1-1-																

	MAJOR DIVISION	s	SY	MBOL		DESCRIPTION	s	GEN	IERAL	L NOT	ES						
				GW GP	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES			I. Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual									
	GRAVELS (More than half	WITH LITTLE OR NO FINES	S D D D					2. N	o warra	anty is pr	rovided as	to the co	ntinuity of s	oil condit	ions be	tween	
	coarse fraction is larger than		90	-	SILTY GRA	VELS, GRAVEL-SIL1	individual sample locations.										
COARSE	the #4 sieve)	GRAVELS WITH OVER		GM	MIXTURES	TURES		3. 20	on the d	date indi	cated.	conunto	iis observed	at the pt			
SOILS		12% FINES		GC	CLAYEY GRAVELS, GRAVEL-SAND- MIXTURES		AND-CLAY	4. In	genera were eva	al, Unifie /aluated	d Soil Clas by visual n	sification nethods	n designatio only. There	ns preser fore, actu	nted on al desig	the logs Inations	
(More than half of material is larger than the #200 sieve)		CLEAN SANDS		sw	WELL-GR	ADED SANDS, SAND	GRAVEL		based o	on labor	KEV	s) may va	ry.				
	SANDS	OR NO FINES		SP	POORLY-GRADED SANDS, SAN		ND-GRAVEL	C		NSOLI	IDATION			;	SA	SIEVE ANALYSIS	
	(More than half				MIXTURES	WITH LITTLE OR NO	FINES	AL UC		TERBE	RG LIMIT	<u>'S</u> IPRESS	ION		DS T	DIRECT SHEAR TRIAXIAL	
	is smaller than	SANDS WITH		SM	SILTY SA	NDS, SAND-GRAVE	EL-SILT	S	SO			л			R	RESISTIVITY	
	the #4 sleve)	OVER 12% FINES			CLAYEY SANDS SAND-GRAVEL-CLAY MIXTURES			CBR		LIFOR	C CONTENT RNIA BEARING RATIO RE/DENSITY RELATIONSHIP RNIA IMPACT 'SE POTENTIAL				SU	SOLUBLE SULFATES	
				30			s	COM						>	PM	PERMEABILITY % FINER THAN #200	
			\mathbb{T}	м			SILTS WITH	COL	. CO	LLAPS					Gs	SPECIFIC GRAVITY	
	еште				SLIGHT P	LASTICITY		SS	SHI	RINK S	SWELL				SL	SWELL LOAD	
	51L157	AND CLATS		CL	INORGANI	C CLAYS OF LOW TO Y, LEAN CLAYS	MEDIUM						DESC				
	(Liquid limi	(Liquid limit less than 50)			ORGANIC	SILTS & ORGANIC SI	LTY CLAYS	V		TION	CRUMB		REAKS WITH				
SOILS			E	OL	OF LOW PL	ASTICITY		м	DDERA	TE	CRUMB	LES OR B	REAKS WITH	H CONSIDERABLE FINGER PRESSURE			
(More than half of material				МН		C SILTS, MICACEOUS	S OR R SILT	ST	RONG	i	WILL NO	OT CRUM	BLE OR BRE	AK WITH F	INGER	PRESSURE	
is smaller than the #200 sieve)	SILTS	AND CLAYS			INORGANI	CLAYS OF HIGH PL	ASTICITY,	STR	исти	URE							
· · · · · ,	(Liquid limit g	reater than 50)		СН	FAT CLAYS	3		DE	DESCRIPTION		DESCRIPTION						
					ORGANIC	CLAYS & ORGANIC SILTS M-TO-HIGH PLASTICITY		STRATIFIED ALTERNATING LAYERS OF VARYING MATERIAL OR COLOR WITH LAYERS AT LEAST 6MM THICK							WITH LAYERS AT LEAST 6MM THICK		
		<u><u> </u></u>		PEAT. HUN	PEAT, HUMUS, SWAMP SOILS		LAMINATED ALTERNATING LAYERS OF VARYING MATERIAL OR COLOR WITH THE LAYERS LESS THAN 6 MM THIC										
HIGI	HLY ORGANIC SO	ORGANIC SOILS			WITH HIGH	ORGANIC CONTENT	SANIC CONTENTS FISSUE				BREAKS ALONG DEFINITE PLANES OF FRACTURE WITH LITTLE RESISTANCE TO FRACTURING						
MOISTURE	CONTENT							SLICKENSIDED FRACTURE PLANES APPEAR POLISHED OR GLOSSY, SOMETIMES STRIATED									
DRY	ABSENCE	OF MOISTURE, D	USTY	, DRY	TO THE T	OUCH		CONCENTER OUL THAT CAN BE BROKEN DOWN INTO SMALL ANGULAR LUMPS WHICH RESIST FURTHER BREAKDOWN IF INSED INCLUSION OF SHILL BOOVERS OF DEFENSED FOR BREAKDOWN									
SLIGHTLY MOIS		IG A MINIMAL AN	IOUN		IOISTURE	E, NOT DRY OR	MOIST	HOMOGENOUS SAME COLOR AND APPEARANCE THROUGHOUT									
MOIST	DAMP BUT	NO VISIBLE WAT	ER						NOOLI		OAME O						
		EE WATER, USU	ALLY	SOIL	BELOW	VATER TABLE											
DESCRIPTION	THICKNESS	DESCRIPTION	FR	FREQUENCY				DESC			RACE	FEW	15 - 25	SOME 30 - 45	50	51LY	
SEAM	1/16-1/2"	16-1/2" OCCASIONAL		ONE OR LESS PER FOOT OF THICKNES					KCLINI	•	<5	5-10	13-23	30 - 43	50		
LAYER	1/2-12"	FREQUENT	MORE THAN ONE PER FOOT OF THICKNE														
APPARENT	/ RELATIVE	DENSITY - CO	ARS	SE-GF	RAINED	SOIL]										
APPARENT	SPT (blows/ft)	MODIFIED CA SAMPLER	NFIED CA. CALI			RELATIVE DENSITY	FIELD TEST										
VERY LOOSE	<4	(blows/ft) <4	(blows/ft) <4		(blows/ft) (%) <5 0 - 15		EASILY PENETRATED WITH 1/2-INCH REINFORCING ROD PUSHED BY HAND										
LOOSE	4 - 10	5 - 12	5 - 12		- 15	15 - 35	DIFFICULT TO PENETRATE WITH 1/2-INCH REINFORCING ROD PUSHED BY HAND										
MEDIUM DENS	SE 10 - 30	12 - 35	12 - 35		- 40	35 - 65	EASILY PENETRATED A FOOT WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER										
DENSE	30 - 50	35 - 60	40		- 70	65 - 85	DIFFICULT TO PENETRATE 12" WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER										
VERY DENSE	>50	>50 >60		>70		0 85 - 100 PENETRAT		ETRATED ONLY FEW INCHES WITH 1/2-INCH REINFORCING ROD DRIVEN WITH 5-LB HAMMER									
CONSISTEN	ICY - FINE-G	RAINED SOIL					1										
CONCICTENC	SPT	то	RVAN	ANE PI		CKET ROMETER											
CONSISTENC	, t (blows	/ft) UND SI STREM	UNDRAINED SHEAR STRENGTH (tsf)		UNCONFINED COMPRESSIVE STRENGTH (tsf)		FIELD IEST										
VERY SOFT	<2	<	0.125	25		:0.25	EASILY PENE	EASILY PENETRATED SEVERAL INCHES BY THUMB. EXUDES BETWEEN THUMB AND FINGERS WHEN SQUEEZED BY HAND.									
SOFT	2 - 4	0.12	5 - 0.2	0.25 0		- 0.5 EASILY PE		IETRATED ONE INCH BY THUMB. MOLDED BY LIGHT FINGER PRESSURE.									
MEDIUM STIF	F 4-8	0.2	0.25 - 0.5		0.5 - 1.0		PENETRATED OVER 1/2 INCH BY THUMB WITH MODERATE EFFORT. MOLDED BY STRONG FINGER PRESSURE.										
STIFF	8 - 1	5 0.5	0.5 - 1.0		1.0	0 - 2.0	INDENTED ABOUT 1/2 INCH BY THUMB BUT PENETRATED ONLY WITH GREAT EFFORT.										
VERY STIFF	15 - 3	0 1.0	1.0 - 2.0		2.0	0 - 4.0	READILY INDENTED BY THUMBNAIL.										
HARD	>30	;	>2.0		:	>4.0	INDENTED WITH DIFFICULTY BY THUMBNAIL.										
			>2.0		>4.0												

KEY TO SOIL SYMBOLS AND TERMINOLOGY

Figure B-5

Appendix C

Prepared for Carollo Engineers Prepared By IGES, Inc.

Laboratory Results
Water Content and Unit Weight of Soil

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023 Location: Bluffdale, Utah Date: 1/3/2024 By: CJ/SE/PW

	Boring No.	B-01	B-01	B-01	B-02	B-02	B-02	B-03	B-03
Infc	Sample								
ple	Depth	2.5'	20.0'	40.0'	10.0'	15.0'	25.0'	10.0'	15.0'
am	Split	Yes	Yes	No	Yes	No	Yes	No	No
01	Split sieve	No.10	3/8"		3/8"		No.10		
	Total sample (g)	377.82	562.53		334.61		122.04		
	Moist coarse fraction (g)	10.41	54.55		57.10		53.06		
	Moist split fraction (g)	367.41	507.98		277.51		68.98		
ıt	Sample height, H (in)					2.715			2.998
eigh a	Sample diameter, D (in)					2.411			2.414
: We Data	Mass rings + wet soil (g)					500.78			496.50
Jnit]	Mass rings/tare (g)					129.35			131.37
1	Moist unit wt., γ_m (pcf)					114.2			101.4
L	Wet soil + tare (g)	47.57	184.94		178.02		181.32		
arse	Dry soil + tare (g)	47.16	183.06		174.83		178.70		
Co: Frac	Tare (g)	37.16	127.32		118.61		124.38		
	Water content (%)	4.1	3.4		5.7		4.8		
L	Wet soil + tare (g)	139.11	339.28	210.70	329.64	194.76	188.68	324.75	248.53
lit tior	Dry soil + tare (g)	138.47	321.57	205.53	312.87	185.17	183.53	294.58	228.71
Sp Frac	Tare (g)	127.44	124.51	127.86	127.53	127.57	123.58	119.90	128.60
	Water content (%)	5.8	9.0	6.7	9.0	16.6	8.6	17.3	19.8
V	Water Content, w (%)	5.8	8.4	6.7	8.5	16.6	6.9	17.3	19.8
	Dry Unit Wt., γ _d (pcf)					97.9			84.6

Entered by:_	
Reviewed:	

Water Content and Unit Weight of Soil

(In General Accordance with ASTM D7263 Method B and D2216)

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023 Location: Bluffdale, Utah Date: 1/8/2024 By: CJ/SE/PW

).	Boring No.	B-03	B-03	B-04	B-04	B-04	B-04	
Infc	Sample							
ple	Depth	15.0'	30.0'	10.0'	15.0'	25.0'	40.0'	
am	Split	No	No	No	No	No	No	
01	Split sieve							
	Total sample (g)							
	Moist coarse fraction (g)							
	Moist split fraction (g)							
ıt	Sample height, H (in)		5.885		2.994			
eigh a	Sample diameter, D (in)		2.402		2.412			
. We Dati	Mass rings + wet soil (g)		1033.29		494.49			
Jnit	Mass rings/tare (g)		271.99		135.48			
1	Moist unit wt., γ_m (pcf)		108.8		99.9			
	Wet soil + tare (g)							
	Dry soil + tare (g)							
	Tare (g)							
	Water content (%)							
ata	Wet soil + tare (g)	361.74	380.49	471.83	251.45	344.71	248.00	
ater at D	Dry soil + tare (g)	327.18	355.18	433.61	230.85	296.76	228.19	
W ₆ ntei	Tare (g)	151.98	12.45	225.10	127.02	124.10	124.60	
Co	Water content (%)	19.7	7.4	18.3	19.8	27.8	19.1	
V	Water Content, w (%)	19.7	7.4	18.3	19.8	27.8	19.1	
	Dry Unit Wt., γ_d (pcf)		101.3		83.4			

Project: JVWTP Fi	Iter & Chem Feed Upgrade
No: 00823-023	
Location: Bluffdale, U	Jtah
Date: 1/5/2024	
By: RH	
Grooving tool type: H	Plastic
Liquid limit device: N	Aechanical Liqu
Rolling method: I	Hand S

Boring No.: B-03 Sample: Depth: 20.0' Description: Brown silt

Preparation method: Air Dry Liquid limit test method: Multipoint Screened over No.40: Yes Larger particles removed: Dry sieved

	Determination No	1	2					1
	Wet Soil + Tare (g)	14.49	14.24					1
	Dry Soil + Tare (g)	13.03	12.93]
	Water Loss (g)	1.46	1.31					
	Tare (g)	7.11	7.53					
	Dry Soil (g)	5.92	5.40					
	Water Content, w (%)	24.66	24.26					
Liquid 1	Limit			-				-
	Determination No	1	2	3				
	Number of Drops, N	35	24	15				
	Wet Soil + Tare (g)	12.14	13.05	13.88				
	Dry Soil + Tare (g)	11.06	11.57	12.26				
	Water Loss (g)	1.08	1.48	1.62				
	Tare (g)	7.63	7.03	7.40				
	Dry Soil (g)	3.43	4.54	4.86				
	Water Content, w (%)	31.49	32.60	33.33				
	One-Point LL (%)		32					
Pla	Plastic Limit, PL (%) asticity Index, PI (%)	24 8						
34 -	Flow Curve	7 (60 Pla	sticity Cha	nt			
225			- 1 Ia	sticity Cha	11	U-I	ine	
55.5			50 -					
- 22			40			СН	A-I	ine
8 3			40 -					
ent	i v	x (F	-					
52.5 -	\downarrow $LL = 32$	nde	30 -					
		lic I					MH	
Mat		last	20 -					
- 		<u></u>	-					
31.5 -		1	10					
-			CI	-ML	ML			
31 -	•		0 +					
1	Number of drops, N	100	0 10	20 30	40 <u>50</u>	60 70	80 90	ţ
Entered	hv.				Liquia Lim	III (LL)		
Reviewe	ed:		Z-\PROIFCT	S\00823 Caroll	0\023 IVWTP F	ilter & Chem	Feed Unorad	e\۲∆
			Z. a ROJLCI	5.00025_Caron		u_chelli	_i cou_opgiau	- L'A

Project: JVWTP Filter & Chem Feed Upgrade
No: 00823-023Location: Bluffdale, Utah
Date: 1/8/2024
By: RHGrooving tool type: Plastic
Liquid limit device: MechanicalLiquid

Rolling method: Hand

Boring No.: B-04 Sample: Depth: 20.0' Description: Light brown silt

Preparation method: Air Dry Liquid limit test method: Multipoint Screened over No.40: Yes Larger particles removed: Dry sieved

	Determination No	1	2					
	Wet Soil + Tare (g)	13.93	14.79					
	Dry Soil + Tare (g)	12.26	12.99					
	Water Loss (g)	1.67	1.80					
	Tare (g)	7.02	7.44					
	Dry Soil (g)	5.24	5.55					
V	Water Content, w (%)	31.87	32.43					
Liquid Li	imit							
	Determination No	1	2	3				
	Number of Drops, N	33	26	15				
	Wet Soil + Tare (g)	11.07	10.98	11.07				
	Dry Soil + Tare (g)	10.08	10.08	10.19				
	Water Loss (g)	0.99	0.90	0.88				
	Tare (g)	7.06	7.40	7.72				
	Dry Soil (g)	3.02	2.68	2.47				
V	Vater Content, w (%)	32.78	33.58	35.63				
	One-Point LL (%)		34					
Pl Plas	lastic Limit, PL (%) sticity Index, PI (%)	32 2						
36 -		7 (⁶⁰ D				/	
35.5	Flow Curve			sticity Cha	rt		. /	
33.3		4	50			0-1	Line	
35	<u> </u>		-				A-Li	ne
%			40			СН		
ti 34.5		(PI	-					
inte	<u>\</u>	dex	30					
S 34 -		c In					MH	
ate	\mathbf{X} $\mathbf{LL} = 34$	astic	20	/	/ X			
≥ 33.3	Ì	Pla			CL			
33			10					
-	×			MI	ML			
32.5					×			
10	Number of drong N	100	0 10	20 30	40 50	60 70	80 90	100
	radiation of drops, is		0 10	20 50	Liquid Li	mit (LL)	00 90	100
Entered by	y:							
Keviewed			Z:\PROJECT	S\00823_Carol	lo\023_JVWTP	_Filter_&_Chem	_Feed_Upgrade	\[ALv2.

Project: JVWTP Filter	& Chem Feed Upgrade
No: 00823-023	
Location: Bluffdale, Utah	
Date: 1/5/2024	
By: RH	
Grooving tool type: Plastic	c
Liquid limit device: Mecha	anical Liqu
Rolling method: Hand	S

Boring No.: B-04 Sample: Depth: 30.0' Description: Brown silt

Preparation method: Air Dry Liquid limit test method: Multipoint Screened over No.40: Yes Larger particles removed: Dry sieved

Plastic Limit

Determination No	1	2			
Wet Soil + Tare (g)	14.60	14.39			
Dry Soil + Tare (g)	12.93	12.78			
Water Loss (g)	1.67	1.61			
Tare (g)	7.05	7.05			
Dry Soil (g)	5.88	5.73			
Water Content, w (%)	28.40	28.10			
Liquid Limit					_
Determination No	1	2	3		
Number of Drops, N	30	24	16		
Wet Soil + Tare (g)	13.13	12.23	12.50		
Dry Soil + Tare (g)	11.70	11.20	11.28		
Water Loss (g)	1.43	1.03	1.22		
Tare (g)	6.97	7.82	7.45		
Dry Soil (g)	4.73	3.38	3.83		
Water Content, w (%)	30.23	30.47	31.85		
One-Point LL (%)	31	30			
Plasticity Index, PI (%)	3				
32 31.8 \Rightarrow Flow Curve	e	60 Pla	sticity Cha	rt	
31.6		50		U-Line	Line
31.4		4.0		СН А-	·Line
€ 31.2 ×	(I	40 -			
tu 21	x (I	-			
	nde	30 -			
30.8 N	tic 1			MH	
^{30.6} 30.6 ↓ LL = 31	last	20 -		CL	
30.4		-			
30.2		10			
			-ML	ML	
30 +		0 1	~		
Number of drops, N	100	0 10	20 30	40 50 60 70 80 9 Liquid Limit (LL)	0 10
Entered by:					
Keviewed:		Z:\PROJECT	S\00823_Caroll	o\023_JVWTP_Filter_&_Chem_Feed_Upgra	ade\[AL

 $Z:\PROJECTS \00823 \Carollo \023 \JVWTP_Filter_\&_Chem_Feed_Upgrade \[ALv2.xlsm]3$

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023 Location: Bluffdale, Utah Date: 1/5/2024 By: RH

Grooving tool type: Plastic Liquid limit device: Mechanical Rolling method: Hand Boring No.: B-04 Sample: Depth: 40.0' Description: Reddish brown silt

Preparation method: Air Dry Liquid limit test method: Multipoint Screened over No.40: Yes Larger particles removed: Dry sieved

	-						
	Determination No	1	2				
	Wet Soil + Tare (g)	15.48	14.26				
	$\overline{\text{Dry Soil} + \text{Tare}}(g)$	13.78	12.83				
	Water Loss (g)	1.70	1.43				
	Tare (g)	7.08	7.11				
	Dry Soil (g)	6.70	5.72				
	Water Content, w (%)	25.37	25.00				
Liquid I	Limit				-		
	Determination No	1	2	3			
	Number of Drops, N	32	24	15			
	Wet Soil + Tare (g)	12.09	12.36	12.78			
	Dry Soil + Tare (g)	11.12	11.27	11.49			
	Water Loss (g)	0.97	1.09	1.29			
	Tare (g)	7.52	7.34	7.06			
	Dry Soil (g)	3.60	3.93	4.43			
	Water Content, w (%)	26.94	27.74	29.12			
	One-Point LL (%)		28				
I Pla	Plastic Limit, PL (%) asticity Index, PI (%)	25 3					
29.5		_ (⁵⁰ 1 pt	·· · · · · · · · · · · · · · · · · · ·		/	
-	Flow Curve			sticity Cha	rt		
29 -			50 -			0-1	Line
-			-				A-Li
\$ ^{28.5}			40 -		/		
int (<u>/</u>	[] []	-				
28 -	\langle	Idex	30]				
er co	LL = 28	c In	-				MH
at 27.5		asti	20	/			
^	\ \	PI]				
27]	`		10				
-			CI	-ML	ML		
26.5			0	×			
10	0 Number of drops, N	100	0 10	20 30	40 50	60 70	80 90
Entered 1	1 / 1				Liquid Lir	nıt (LL)	
Reviewe	d.		7. DDATECT	S\00822 Coroll		Filter & Cham	Food Unamada
	u		Z:\PKUJEUI	Swuozs_Carol	10/025_JVWIP_	rmer_a_Unem	_reeu_0pgrade

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023 Location: Bluffdale, Utah Date: 1/8/2024 By: RH Grooving tool type: Plastic

Liquid limit device: Mechanical Rolling method: Hand Boring No.: Bulk-01 Sample: Depth: 0-2' Description: Brown silty clay

Preparation method: Air Dry Liquid limit test method: Multipoint Screened over No.40: Yes Larger particles removed: Dry sieved

Dete	rmination No	1	2					
Wet S	oil + Tare (g)	15.47	14.12					
Dry S	oil + Tare (g)	14.04	12.94					
V	Vater Loss (g)	1.43	1.18					
	Tare (g)	7.10	7.05					
	Dry Soil (g)	6.94	5.89					
Water C	ontent, w (%)	20.61	20.03					
Liquid Limit								
Dete	rmination No	1	2	3				
Numbe	er of Drops, N	30	23	17				
Wet S	oil + Tare (g)	14.03	13.00	13.18				
Dry S	oil + Tare (g)	12.57	11.82	11.92				
V	Vater Loss (g)	1.46	1.18	1.26				
	Tare (g)	7.01	7.38	7.34				
	Dry Soil (g)	5.56	4.44	4.58				
Water C	ontent, w (%)	26.26	26.58	27.51				
0	ne-Point LL (%)	27	26					
Plastic L Plasticity I	imit, PL (%) ndex, PI (%)	20 7						
27.6 27.4 27.2 ^(*) 27.2 ^(*) 27.2 ^(*) 27.2 26.8 26.6 26.4 26.4 26.2	Flow Curve	Plastic Index (PI)	50 Pla: 50 40	sticity Cha	rt CL ML	U-I CH	Line A-Lin MH	ne
26 +	er of drops, N	⊢ 100	0 10	20 30	40 50 Liquid Li	60 70 mit (LL)	80 90	100
Entered by:								
Reviewed:			Z:\PROJECT	S\00823_Carol	lo\023_JVWTP	_Filter_&_Chem	_Feed_Upgrade	[ALv

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023 Location: Bluffdale, Utah Date: 1/5/2024

By: RH Grooving tool type: Plastic Liquid limit device: Mechanical Rolling method: Hand Boring No.: Bulk-02 Sample: Depth: 0-2' Description: Brown silty clay

Preparation method: Air Dry Liquid limit test method: Multipoint Screened over No.40: Yes Larger particles removed: Dry sieved

	Determination No	1	2				
	Wet Soil + Tare (g)	14.26	14.54				
	Dry Soil + Tare (g)	13.05	13.25				
	Water Loss (g)	1.21	1.29				
	Tare (g)	7.05	7.01				
	Dry Soil (g)	6.00	6.24				
V	Water Content, w (%)	20.17	20.67				
Liquid Li	imit						
	Determination No	1	2	3			
	Number of Drops, N	32	25	17			
	Wet Soil + Tare (g)	12.33	14.77	14.45			
	Dry Soil + Tare (g)	11.26	13.24	12.90			
	Water Loss (g)	1.07	1.53	1.55			
	Tare (g)	7.11	7.53	7.48			
	Dry Soil (g)	4.15	5.71	5.42			
V	Water Content, w (%)	25.78	26.80	28.60			
	One-Point LL (%)		27				
Plas	sticity Index, PI (%)	7					
29 -		7 (60 1				
205	Flow Curve] Pla	sticity Cha	irt		. /
28.3		:	50 -			/ U-I	Line
28			-				A-Lin
<pre>@</pre>			40			СН	
ti 27.5		(PI	1				
ntei		dex	30 -				
S 27 -	\mathbf{X} II = 27	In I	-				MH
ate		astic	20 -	/			
≥ 26.5		Pla	-		CL		
26			10				
20	,			MIX	ML		
25.5							
10	Number of drong N	100	0 10	20 30	40 50	60 70	80 90
	radiation of drops, is		0 10	20 50	Liquid Lim	it (ĽL)	00 90
Entered by	y:						
Reviewed	L:		Z:\PROJECT	S\00823_Carol	lo\023_JVWTP_F	ilter_&_Chem	_Feed_Upgrade\[

© IGES 2004, 202

Reviewed:

Z:\PROJECTS\00823_Carollo\023_JVWTP_Filter_&_Chem_Feed_Upgrade\[GSDv2.xlsm]1

Reviewed:

Reviewed:

Z:\PROJECTS\00823_Carollo\023_JVWTP_Filter_&_Chem_Feed_Upgrade\[GSDv2.xlsm]3

(ASTM D6913)

Sieve

6"

4"

3"

1.5"

1"

3/4"

3/8"

No.4

No.10 No.20

No.40

No.60

No.100

No.140

No.200

No: 00823-023

Split:

No

Moist

209.76

_

1.000

Grain Size

(mm)

150

100

75

37.5

25

19

9.5

4.75

2

0.85

0.425

0.25

0.15

0.106

0.075

_

_

_

Location: Bluffdale, Utah

Date: 1/2/2024

Total sample wt. (g):

Split fraction:

Accum.

Wt. Ret. (g)

-

_

-

-1.55

4.58

8.05

13.59

26.12

39.17

57.98

By: CJ

Reviewed:

(ASTM D6913)

Entered by:

Reviewed:

Grain size (mm)

3/4"

3/8"

No.4

No.10 No.20

No.40

No.60

No.100

No.140

19

9.5

4.75

2

0.85

0.425

0.25

0.15

0.106

_

100.0

99.1

96.1

89.1

86.3

56.8

45.1

_

-

-1.80

7.52

20.82

26.02

82.25

104.50

(ASTM D6913)

Reviewed:

Z:\PROJECTS\00823_Carollo\023_JVWTP_Filter_&_Chem_Feed_Upgrade\[GSDv2.xlsm]8

(ASTM D6913)

Amount of Material in Soil Finer than the No. 200 (75µm) Sieve

(ASTM D1140)

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023 Location: Bluffdale, Utah Date: 12/29/2023 By: SE/CJ

	Boring No.	B-01	B-03	B-04	B-04		
ıfo.	Sample						
e In	Depth	30.0'	10.0'	30.0'	40.0'		
mpl	Split	Yes	No	Yes	No		
Sa	Split Sieve*	3/8"		No.4			
	Method	В	В	В	В		
	Specimen soak time (min)	300	320	450	410		
	Moist total sample wt. (g)	487.83	204.85	436.33	123.40		
	Moist coarse fraction (g)	60.02		11.70			
	Moist split fraction + tare (g)	394.71		266.20			
	Split fraction tare (g)	180.27		126.69			
	Dry split fraction (g)	181.35		113.29			
Dry retained No. 200 + tare (g)		305.61	228.55	192.20	203.84		
	Wash tare (g)		119.90	126.69	124.60		
	No. 200 Dry wt. retained (g)	125.34	108.65	65.51	79.24		
	Split sieve* Dry wt. retained (g)	56.78		10.96			
	Dry total sample wt. (g)	418.57	174.68	355.78	103.59		
о п	Moist soil + tare (g)	174.70		36.71			
arse	Dry soil + tare (g)	171.46		35.97			
Co: Frac	Tare (g)	114.69		25.01			
[Water content (%)	5.71		6.75			
ч	Moist soil + tare (g)	394.71	324.75	266.20	248.00		
olit etio1	Dry soil + tare (g)	361.62	294.58	239.98	228.19		
Sp Frac	Tare (g)	180.27	119.90	126.69	124.60		
[Water content (%)	18.25	17.27	23.14	19.12		
Percent passing split sieve* (%)		86.4		96.9			
Perce	ent passing No. 200 sieve (%)	26.7	37.8	40.9	23.5		
		with 1 dry					

Comments: These results are in nonconformance Method D1140 because the minimun

mass was not met.

Entered by:____

Reviewed:

Laboratory Compaction Characteristics of Soil ASTM D698 / D1557) © IGES 2004, 2024										
Project: JVWTP Filter &	c Chem I	Feed Upg	rade	Bor	ing No.:	Bulk-01				
No: 00823-023			·		Sample:					
Location: Bluffdale, Utah					Depth:	0-2'				
Date: 1/8/2024			Sample Description: Brown silty, clayey sand with grave							
By: KC]	Engineering Classification: Not requested							
		As-r	As-received water content (%): Not requested							
Method: ASTM I	D1557 B		Pre	eparation	method:	Moist				
Mold Id. INC 2				I	Rammer:	Mechani	ical-circu	lar face		
Mold volume (ft^3): 0.0333				Rock Co	rrection:	Yes	* See resu	lts below		
			Perce	nt fraction	n retained	l, Pc (%)	10.0			
Optimum water conte	ent (%):	11.9	Perce	ent fractio	on passin	g, Pf (%)	90.0			
Maximum dry unit weig	120.6									
Point Number	-4%	-2%	As is	+2%						
Wt. Sample + Mold (g)	6102.4	6217.5	6253.6	6180.0						
Wt. of Mold (g)	4218.9	4218.9	4218.9	4218.9						
wet Unit wt., γ_m (pcf)	124.8	132.4	134.8	130.0						
Wet Soil + Tare (g)	410.24	453.24	396.78	477.79						
Dry Soil + Tare (g)	387.38	421.10	366.06	431.58						
l afe (g)	122.07	120.31	122.78	120.81			1			
Water Content, W (%)	8.0	10.9	12.0	15.2						
Dry Offit Wt., γ_d (per)	119.4	119./			<u> </u>					
<u> ASTM D4718</u>	(1000000000000000000000000000000000000									
Connected water cont	ant (0/)-	11 1	Overs	Izeu Iraci	$1011, \pm 3/8$	(70):	10.0			
Corrected water conto	till (70):	11.1	v c	iovo for	$\pm 3/8$	-111. (70):	3.4			
Corrected ary unit weig	nt (per):	123.9	3	Dulle and		machon:	5/0-III. 2.65			
Bulk specific gravity, Gs: 2.65 As										

Z:\PROJECTS\00823_Carollo\023_JVWTP_Filter_&_Chem_Feed_Upgrade\[PROCTORv3.xlsm]1

Laboratory Compaction C (ASTM D698 / D1557)	haracter	ristics of	<u>Soil</u>						
Project: IVWTP Filter &	Chem I	Feed Ung	rade	Bor	ing No •	Bulk_02	©IGE	\$ 2004, 2024	
No: 00823-023		ree ope	Ji auc	501	Sample:	Duik-02			
Location: Bluffdale, Utah					Depth:	0-2'			
Date: 1/5/2024			Sa	mple Des	cription:	Brown silty,	clayey sand	with gravel	
By: JJ			Engineeri	ing Classi	ification:	Not requ	ested	U U	
5		As-r	eceived v	vater con	tent (%):	Not requ	ested		
Method: ASTM I	D1557 B		Pre	eparation	method:	Moist			
Mold Id. INC 3				I	Rammer:	Mechani	cal-circul	lar face	
Mold volume (ft^3): 0.0333				Rock Co	rrection:	Yes	* See resu	lts below	
			Perce	nt fraction	n retained	l, Pc (%)	18.6		
Optimum water conte	ent (%):	12.1	Perce	ent fractio	on passing	g, Pf (%)	81.4		
Maximum dry unit weight (pcf): 116.9									
Point Number	As is	-2%	+2%	+4%	-4%				
Wt. Sample + Mold (g)	6183.9	6109.2	6175.4	6137.7	6026.5				
Wt. of Mold (g)	4205.6	4205.6	4205.6	4205.6	4205.6				
Wet Unit Wt., γ_m (pcf)	131.1	126.1	130.5	128.0	120.6				
Wet Soil + Tare (g)	649.25	670.95	627.51	631.00	573.96				
Dry Soil + Tare (g)	592.16	629.88	567.75	576.46	540.89				
Tare (g)	121.41	225.60	154.02	210.57	151.74				
Water Content, w (%)	12.1	10.2	14.4	14.9	8.5				
Dry Unit Wt., γ_d (pcf)	116.9	114.5	114.0	111.4	111.2				
*Correction of Unit Weigh	t and W	ater Con	tent for	<u>Soils Cor</u>	<u>itaining</u>	<u>Oversize</u>	Particle	<u>s</u>	
(ASTM D4718)		40 -	Overs	ized fract	10n, +3/8	-1n. (%):	18.6		
Corrected water content (%): 10.7 Water content, +3/8-in. (%): 4.3									
Corrected dry unit weig	ht (pcf):	123.6	S	ieve for c	oversized	traction:	3/8-1n.		
				Bulk sp	ecific gra	vity, Gs:	2.65	Assumed	
140			1						
	., .	1							

Z:\PROJECTS\00823_Carollo\023_JVWTP_Filter_&_Chem_Feed_Upgrade\[PROCTORv3.xlsm]2

© IGES 2004, 2024

Project: Number: Location:	JVWTP H 00823-023 Bluffdale,	F ilter & Cho G Utah	em Feed Uj	ogra	ade				Orio	Bori S	ng No. Sample Depth	.: E e: n: C	Bulk-01	5.57 D
Date:	1/9/2024 NG						г .		Urig	inal I	viethoc	1: /	ASIM DI	22 / B
By:	KC		. 1. (0	1	0 0 C		Engi	neer	ing C	lassii		1: ľ	Not reques	ted
. N	/laximum l	Dry Unit We	eight (pcf):	1	20.6			Co	nditio	n of S	Sample	2: 2	Soaked	
	Optimu	m Water Co	intent (%):	1	1.9			2	scalp	and F	Replace	e: 1	NO	
	Rela	ative Compa	(%):	I	00.2									
	0.1 in.	Corrected (CBR (%):		53.8									
	0.2 in.	Corrected	CBR (%):	6	<u>6.1</u>	. 1						-	D.C	
		7 1 1 7 1		As (Comp	acted	Data		<u> </u>	•1	T (<u> </u>	Before	After
** 7.	0.6.11.	Mold Id.	A					V	Vet So	51l +	Fare (g	g)	2039.73	1789.76
Wt.	of Mold +	Sample (g)	11818.5					1	Dry So	pil + j	Tare (g	g)	1875.01	1639.78
	Wt. o	of Mold (g)	7231.3							,	Tare (g	g)	465.11	331.42
I	Dry Unit W	/eight (pcf)	120.8					I I	Water	Con	tent (%	5)	11.7	11.5
		Afte	r Soaking I	Data	l								Average	Top 1 in.
Wt.	of Mold +	Sample (g)	11861.9					V	Vet So	$\operatorname{sil} + \operatorname{sil}$	Tare (g	g)	2042.89	758.09
Ι	Dry Unit W	/eight (pcf)	121.6					Ι	Dry So	oil + '	Tare (g	g)	1904.77	689.03
										,	Tare (g	g)	741.29	125.08
								V	Water	Cont	tent (%	5)	11.9	12.2
					Swe	ell Dat	а							
Da	ate	Tir	ne]	Dial			Su	rchar	rge (pst	f) 5	50	
1/4/2	2024	9:	8		0	.364				Sv	vell (%	6) (0.02	
1/8/2	2024	8:2	38		2500	.365		S	oakin	g Per	riod (hı	r) 9	95	
Penetrat	ion Data	Piston ID	CBR T1		2300		└	- Lo:	d Penet	ration (Turve			
	Ze	ro load (lb) =	0			-	×	0.1	in. Corr	ected C	CBR			
	Area of	Piston $(in^2) =$	3.0					0.2	in. Corr	ected (CBR			
Penetration	Raw Load	Piston Stress	Std. Stress		2000	+								
(in.)	(lb)	(psi)	(psi)			-								
0.000	0	0		(is]								
0.025	71	24				-								
0.050	301	100		ton	1500	1								
0.075	677	226		pis		-						/		
0.100	1096	365	1000	n		-								
0.125	1493	498	1125	SS	1000	1								
0.150	1863	621	1250	tre	1000	-								
0.175	2217	739	1375	Ś		-								
0.200	2557	852	1500]								
0.300	3807	1269	1900		500	<u> </u>								
0.400	4827	1609	2300			-	\$							
0.500	5725	1908	2600				H							
					0		05 0 1		15 0	 20 0		20	0.25 0.40	
					0	.00 0.	05 0.1	0 0	.15 U. m	20 0	.23 0.3	00 (;	0.33 0.40	0.45 0.50
									ľ	eneti	ration	(IN	U I	

© IGES 2004, 2024

Project: Number: Location: Date:	JVWTP H 00823-023 Bluffdale, 1/9/2024	Filter & Che B Utah	em Feed Uj	ogr	ade				Orig	Bori S ginal N	ng No.: Sample: Depth: Method	Bu 0-2 AS	1k-02 !' TM D1	557 B	
By:	JJ						Eng	inee	ring C	Classif	ication	No	t reques	sted	
N	/laximum l	Dry Unit We	ight (pcf):	1	16.9			Co	nditio	on of S	Sample	So	aked		
	Optimu	m Water Co	ntent (%):	1	12.1				Scalp	and F	Replace	No			
	Rela	ative Compa	ction (%):	1	00.2				1		I				
	0.1 in.	Corrected (BR (%):	4	56.3										
	0.2 in.	Corrected (BR (%):	Č	50.5										
	012 1110		ebit (70).	As	Comp	acted	Data					E	Before	Af	ter
		Mold Id.	4		1			V	Wet S	oil + '	Tare (g)) 1()61.85	108	6.41
Wt.	of Mold +	Sample (g)	11628.2						Drv S	oil + '	Tare (g)	9	78.83	1012	2.43
	Wt	of Mold (g)	7165.8					-	21)~	, ,	Tare (g)		10.45	407	86
I	Dry Unit W	/eight (ncf)	1171						Water	· Cont	tent $(\%)$))	12.4	12	2
	Jiy enit v	Afte	r Soaking I	Data	1				ii atei	com		/ A	verage	Top	1 in
Wt.	of Mold \pm	Sample (g)	11722.3		-			V	Wet S	oil + 7	Tare (g)) 14	497.37	528	.87
I	Dry Unit W	/eight (ncf)	1172						Drv S	oil + '	Tare (g)		358 76	479	42
-	ony one v	(per)	117.2						DIJS	, ,	Tare (g)	3	93.01	127	44
									Water	· Cont	tent (%)	Ϋ́	14.4	14	. 0
					Swe	ll Data	1		mater	Com	ent (70)	/	1 1. 1	1	.0
Da	nte	Tir	ne		1	Dial			Sı	irchar	ge (nsf	50			
1/4/2	2024	16.	00		0	649			5.	Sv	vell (%)	02	0		
1/8/2	2021	10.	24		0	658		Ş	Soakir	10 Per	iod (hr)	, 0.2) 94	0		
Penetrati	ion Data	Piston ID	CBR T1		1600										
	Ze	ro load (lb) =	0			-		≻Lo	ad Pene	tration (Curve				A
	Area of	Piston $(in^2) =$	3.0		1400		, ,	0.1 0.2	in. Cor	rected C	BR	-			_
Penetration	Raw Load	Piston Stress	Std. Stress				-	0.2							
(in.)	(lb)	(psi)	(psi)		1200	-									_
0.000	0	0	U)	ji)		-									
0.025	92	31		ğ	1000	-									
0.050	388	129		00	1000	-									
0.075	805	268		ist		1									
0.100	1258	419	1000	d u	800				d						-
0.125	1651	550	1125	0 S		-									
0.150	1973	658	1250	res	600	-			<u>¥</u>						_
0.175	2252	751	1375	S		-		1×1							
0.200	2503	834	1500		400	-	<	6							
0.300	3289	1096	1900		400	-	_ /								
0.400	3923	1307	2300			-	\$								
0.500	4541	1514	2600		200		/			+					-
						1	>								
					0			_ . 		↓ ,, ↓ ,	+				
					0	.00 0.0	05 0.	10 (0.15 0	.20 0	.25 0.30	0.	35 0.40	0.45	0.50
									I	Peneti	ration (in)			

Direct Shear Test for Soils Under Dr	ained Co	onditions				10	SES
(ASTM D3080)						© I	GES 2009, 2024
Project: JVWTP Filter & Chem Fee	ed Upgra	de	Boi	ring No.:	B-02		
No: 00823-023	10			Sample:			
Location: Bluffdale, Utah				Depth:	15.0'		
Date: 1/8/2024			Sample D	escription:	Brown gra	vel and sand	1
By: PW			Sa	mple type:	Laboratory	compacted	
Test type: Inundated			Drv	unit weight	97.9	pcf	
Lateral displacement (in.): 0.3			Dij	att	16.6	(%) w	
Shear rate (in./min): 0.0200					1010	(,)	
Specific gravity, Gs: 2.70	Assumed						
	Sam	ple 1	Sam	ole 2	San	ple 3	1
Nominal normal stress (psf)	24	00	12	00	6	00	
Peak shear stress (psf)	23	32	1603		7	31	1
Lateral displacement at peak (in)	0.2	299	0.0	49	0.	034	
Load Duration (min)	13	86	1400		12	281	
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear	
Sample height (in)	0.999	0.971	0.998	0.983	0.997	0.987	
Sample diameter (in)	2.412	2.412	2.413	2.413	2.411	2.411	
Wt. rings + wet soil (g)	181.58	191.30	181.14	191.87	178.71	189.74	
Wt. rings (g)	44.74	44.74	44.33	44.33	42.26	42.26	
Wet soil + tare (g)	194.76		194.76		194.76		
Dry soil + tare (g)	185.17		185.17		185.17		
Tare (g)	127.57		127.57		127.57		
Water content (%)	16.6	24.9	16.6	25.8	16.6	26.1	
Dry unit weight (pcf)	97.9	100.7	97.9	99.3	97.9	98.9	
Void ratio, e, for assumed Gs	0.72	0.67	0.72	0.70	0.72	0.70	
Saturation (%)*	62.3	100.0	62.3	100.0	62.3	100.0	
$\phi'(\text{deg}) = 40$		Average o	t 3 samples	Initial	Pre-shear		
<u>c' (pst) 367</u>		Water	content (%)	16.6	25.6		
*Pre-shear saturation set to 100% for phase calculations		Dry unit	weight (pcf)	97.9	99.6		

Comments:

Tube contained significant gravel; thus, test specimens were remolded to tube total unit weight at as-is water content using material passing the No. 4 sieve. Test specimen #3 contained some material used in specimens 1 and 2 due to sample material constraints.

Entered by:_____ Reviewed:

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023

Location: Bluffdale, Utah

Boring No.: B-02 Sample:

Depth: 15.0'

Lateral Nominal Normal Lateral Nominal Normal Lateral Nomina Displacement Shear Stress Displacement Displacement Shear Stress	Normal s. Displacement
Displacement Shear Stress Displacement Displacement Shear Stress Displacement Displacement Shear Stre	e Displacement
Displacement Shour Stress Displacement Displacement Displacement Displacement Displacement	Displacement
(in.) (psf) (in.) (in.) (psf) (in.) (psf)	(in.)
0.000 0 0.000 0.000 0 0.000 0	0.000
0.002 98 0.000 0.002 8 0.000 0.002 8	0.000
0.005 216 0.000 0.005 129 0.000 0.005 160	0.000
0.007 329 0.000 0.007 318 0.000 0.007 234	0.000
0.010 426 0.000 0.009 459 0.000 0.010 288	-0.001
0.012 499 0.000 0.012 614 0.000 0.012 393	-0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.001
0.019 830 -0.001 0.019 1015 0.001 0.019 620	0.000
0.024 1030 -0.001 0.024 1240 0.002 0.024 098	0.001
0.029 1274 -0.001 0.029 1382 0.005 0.029 715	0.003
0.034 1475 -0.001 0.034 1470 0.005 0.034 731	0.004
0.044 1784 0.000 0.044 1599 0.008 0.044 721	0.008
0.049 1903 0.001 0.049 1603 0.010 0.049 708	0.009
0.054 2004 0.001 0.054 1581 0.012 0.054 695	0.009
0.059 2083 0.002 0.059 1554 0.014 0.059 695	0.010
0.064 2154 0.003 0.064 1494 0.015 0.064 700	0.011
0.069 2210 0.004 0.069 1431 0.016 0.069 693	0.012
0.074 2228 0.005 0.074 1403 0.017 0.074 693	0.012
0.079 2240 0.006 0.079 1370 0.018 0.079 688	0.013
0.084 2223 0.007 0.084 1335 0.019 0.084 683	0.013
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.013
0.094 2159 0.008 0.094 1298 0.019 0.094 6/6	0.014
0.099 2148 0.008 0.099 1273 0.020 0.099 670 0.104 2121 0.000 0.104 1260 0.020 0.104 672	0.014
0.104 2121 0.009 0.104 1209 0.020 0.104 0720.109 2103 0.009 0.109 1257 0.020 0.109 672	0.014
0.109 2103 0.009 0.109 1257 0.020 0.109 072 0.114 0.021 0.114 0.014	0.014
0.114 2009 0.009 0.114 1253 0.020 0.114 001 0.119 2075 0.009 0.119 1253 0.021 0.119 687	0.014
0.124 2065 0.009 0.124 1245 0.021 0.124 689	0.014
0.129 2050 0.009 0.129 1230 0.022 0.129 692	0.014
0.134 2034 0.009 0.134 1224 0.022 0.134 689	0.014
0.139 2051 0.009 0.139 1212 0.022 0.139 693	0.015
0.144 2075 0.009 0.144 1206 0.022 0.144 694	0.015
0.149 2089 0.009 0.149 1209 0.023 0.149 699	0.015
0.154 2093 0.009 0.154 1205 0.023 0.154 708	0.015
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.015
0.104 2085 0.008 0.104 1215 0.025 0.104 714 0.169 2101 0.008 0.169 1204 0.023 0.169 716	0.015
0.109 2101 0.008 0.109 1204 0.025 0.109 710 0.174 2118 0.008 0.174 1195 0.023 0.174 723	0.016
0.179 2123 0.008 0.179 1183 0.023 0.179 726	0.016
0.184 2123 0.008 0.184 1151 0.024 0.184 728	0.016
0.189 2136 0.008 0.189 1143 0.024 0.189 722	0.016
0.194 2160 0.007 0.194 1156 0.024 0.194 707	0.017
0.199 2156 0.007 0.199 1152 0.024 0.199 703	0.017
0.204 2164 0.007 0.204 1145 0.024 0.204 700	0.017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.017
0.214 2169 0.007 0.214 1147 0.024 0.214 693	0.017
0.219 2189 0.007 0.219 1150 0.024 0.219 700	0.017
0.224 2202 0.007 0.224 1138 0.024 0.224 709	0.017
0.229 2204 0.000 0.229 1104 0.024 0.229 711	0.017
0.239 2237 0.006 0.239 1186 0.024 0.239 707	0.017
0.244 2233 0.006 0.244 1193 0.024 0.244 705	0.018
0.249 2255 0.006 0.249 1206 0.024 0.249 711	0.018
0.254 2261 0.006 0.254 1206 0.024 0.254 708	0.018
0.259 2273 0.006 0.259 1209 0.024 0.259 697	0.018
0.264 2279 0.006 0.264 1211 0.024 0.264 701	0.018
0.269 2292 0.006 0.269 1220 0.024 0.269 702	0.018
0.274 2302 0.005 0.274 1237 0.024 0.274 685	0.018
0.279 2310 0.005 0.279 1245 0.024 0.279 686 0.284 1255 0.024 0.279 686	0.018
0.264 2525 0.005 0.284 1255 0.024 0.284 /15 0.280 2355 0.005 0.280 1268 0.024 0.280 717	0.018
0.207 2.325 0.005 0.207 1206 0.024 0.289 717 0.294 2.327 0.005 0.294 1285 0.024 0.249 717	0.018
0.299 2332 0.005 0.299 1301 0.024 0.299 721	0.019
0.300 2330 0.005 0.300 1301 0.024 0.300 721	0.019

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

© IGES 2009, 2024

Project:	JVWTP Filter & Chem Feed Upgrade
No:	00823-023
Location:	Bluffdale, Utah

Boring No.: B-02 Sample: Depth: 15.0'

Direct Shear Test for Soils Under Dr	ained C	onditions				n c	ES .
(ASTM D3080)						© IGH	ES 2009, 2024
Project: JVWTP Filter & Chem Fee	ed Upgra	ıde	Boi	ring No.:	B-03	0.101	
No: 00823-023				Sample:			
Location: Bluffdale, Utah				Depth:	15.0'		
Date: 1/3/2024			Sample D	escription:	Brown san	dy silt	
By: PW			Sa	imple type:	Undisturbe	ed-trimmed	from ring
Test type: Inundated Lateral displacement (in.): 0.3 Shear rate (in./min): 0.0086 Specific gravity, Gs: 2.70	Assumed						
1 0 9	Speci	men 1	Specin	men 2	Speci	imen 3	1
Nominal normal stress (psf)	4(000	20	00	1(000	
Peak shear stress (psf)	32	255	23:	59	14	488	1
Lateral displacement at peak (in)	0.297		0.1	27	0.2	297	
Load Duration (min)	12	200	11	80	12	206	
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear	
Specimen height (in)	1.000	0.922	0.998	0.968	1.000	0.981	
Specimen diameter (in)	2.416	2.416	2.413	2.413	2.413	2.413	
Wt. rings + wet soil (g)	168.14	179.52	164.54	178.99	163.82	180.07	
Wt. rings (g)	46.06	46.06	42.17	42.17	43.14	43.14	
wet soll + tare (g) Dru soll + tare (g)	248.33		248.33		248.55		
Dry son $+$ tare (g)	128.60		128.60		128.60		
Water content (%)	128.00	31.0	128.00	33.0	128.00	35.9	
Dry unit weight (ncf)	84 7	91.8	85.3	87.9	83.9	85.5	
Void ratio e for assumed Gs	0.99	0.84	0.98	0.92	1 01	0.97	
Saturation (%)*	54.0	100.0	54.7	100.0	53.0	100.0	
φ' (deg) 30	1	Average of 3	specimens	Initial	Pre-shear		8
c' (psf) 1040		Water	content (%)	19.8	33.6		
*Pre-shear saturation set to 100% for phase calculations		Dryunit	waight (nof)	84.6	88 /		

Entered by:_____ Reviewed:

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023

Location: Bluffdale, Utah

Boring No.: B-03 Sample: Depth: 15.0'

Nominal norn	nal stress = 40	00 psf	Nominal norn	nal stress = 20	00 psf	Nominal norn	nal stress = 10	00 psf
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
0.000	0	0.000	0.000	0	0.000	0.000	0	0.000
0.002	452	0.000	0.002	265	0.000	0.002	260	-0.001
0.007	651	-0.001	0.003	399	-0.001	0.005	322	-0.001
0.010	818	-0.001	0.010	494	-0.001	0.010	388	-0.001
0.012	976	-0.001	0.012	570	-0.001	0.012	419	-0.001
0.017	1221	-0.002	0.017	727	-0.001	0.017	495	-0.002
0.022	1424	-0.003	0.022	858	-0.001	0.022	554	-0.002
0.027	1603	-0.003	0.027	992	-0.001	0.027	593	-0.002
0.032	1915	-0.004	0.032	1261	-0.002	0.032	702	-0.002
0.042	2057	-0.004	0.042	1392	-0.001	0.042	750	-0.002
0.047	2191	-0.005	0.047	1534	-0.001	0.047	809	-0.002
0.052	2300	-0.005	0.052	1638	-0.001	0.052	853	-0.002
0.057	2418	-0.005	0.057	1727	-0.001	0.057	901	-0.002
0.062	2488	-0.005	0.062	1836	0.000	0.062	944	-0.002
0.007	2508	-0.005	0.087	1925	0.000	0.087	987	-0.001
0.072	2707	-0.005	0.072	2071	0.000	0.072	1017	-0.001
0.082	2772	-0.005	0.082	2119	0.001	0.082	1097	-0.001
0.087	2821	-0.005	0.087	2166	0.002	0.087	1128	0.000
0.092	2865	-0.005	0.092	2217	0.002	0.092	1144	0.000
0.097	2904	-0.005	0.097	2257	0.003	0.097	1171	0.000
0.102	2945	-0.006	0.102	2287	0.003	0.102	1204	0.000
0.107	3009	-0.006	0.112	2320	0.004	0.112	1252	0.001
0.117	3040	-0.006	0.117	2348	0.005	0.117	1267	0.001
0.122	3058	-0.006	0.122	2353	0.005	0.122	1279	0.001
0.127	3074	-0.006	0.127	2359	0.006	0.127	1283	0.002
0.132	3092	-0.006	0.132	2352	0.007	0.132	1294	0.002
0.137	3113	-0.006	0.137	2343	0.007	0.137	1302	0.002
0.142	3110	-0.000	0.142	2324	0.007	0.142	1305	0.002
0.152	3120	-0.007	0.152	2300	0.008	0.152	1300	0.003
0.157	3131	-0.007	0.157	2301	0.009	0.157	1311	0.003
0.162	3136	-0.007	0.162	2300	0.009	0.162	1309	0.003
0.167	3149	-0.007	0.167	2293	0.009	0.167	1315	0.003
0.172	3159	-0.008	0.172	2288	0.009	0.172	1308	0.003
0.177	3167	-0.008	0.177	2283	0.009	0.177	1304	0.003
0.187	3175	-0.008	0.182	2286	0.010	0.187	1302	0.003
0.192	3185	-0.008	0.192	2286	0.010	0.192	1318	0.003
0.197	3180	-0.009	0.197	2258	0.010	0.197	1320	0.003
0.202	3188	-0.009	0.202	2254	0.010	0.202	1321	0.003
0.207	3195	-0.010	0.207	2245	0.010	0.207	1330	0.003
0.212	3193	-0.010	0.212	2244	0.010	0.212	1340	0.003
0.222	3188	-0.011	0.222	2243	0.010	0.222	1365	0.003
0.227	3185	-0.011	0.227	2241	0.011	0.227	1369	0.003
0.232	3188	-0.011	0.232	2236	0.011	0.232	1380	0.003
0.237	3188	-0.011	0.237	2237	0.011	0.237	1391	0.003
0.242	3195	-0.011	0.242	2242	0.011	0.242	1396	0.003
0.247	3100	-0.012	0.247	2245	0.011	0.247	1404	0.003
0.252	3200	-0.012	0.252	2237	0.011	0.252	1415	0.003
0.262	3190	-0.013	0.262	2241	0.011	0.262	1419	0.003
0.267	3195	-0.013	0.267	2238	0.011	0.267	1427	0.003
0.272	3203	-0.014	0.272	2242	0.011	0.272	1444	0.003
0.277	3218	-0.015	0.277	2251	0.011	0.277	1446	0.003
0.282	3220	-0.015	0.282	2250	0.012	0.282	1451	0.003
0.292	3249	-0.016	0.292	2263	0.012	0.292	1477	0.003
0.297	3255	-0.016	0.297	2263	0.012	0.297	1488	0.003

(ASTM D3080)

Direct Shear Test for Soils Under Dr	ained Co	<u>onditions</u>				n c	
(ASTM D3080)						© IGE	S 2009, 2024
Project: JVWTP Filter & Chem Fee	ed Upgra	de	Boi	ing No.:	B-04		,
No: 00823-023	18			Sample:			
Location: Bluffdale Utah				Denth.	15.0'		
Date: $1/4/2024$			Samula D	Depen	Drown cilt	roand	
Date: 1/4/2024				escription.	BIOWII SIIL	y sanu	
By: PW			Sa	imple type:	Undisturbe	d-trimmed f	from ring
Test type: Inundated Lateral displacement (in.): 0.3 Shear rate (in./min): 0.0172 Specific gravity, Gs: 2.70	Assumed						
	Speci	men 1	Specir	men 2	Speci	men 3	
Nominal normal stress (psf)	48	00	24	00	12	200	
Peak shear stress (psf)	59	52	3508		29	079	
Lateral displacement at peak (in)	0.1	47	0.2	87	0.2	297	
Load Duration (min)	12	.02	1266		1273		
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear	
Specimen height (in)	0.999	0.965	0.993	0.954	1.002	0.971	
Specimen diameter (in)	2.415	2.415	2.409	2.409	2.413	2.413	
Wt. rings + wet soil (g)	165.36	179.58	166.53	180.49	162.60	180.51	
Wt. rings (g)	42.75	42.75	45.78	45.78	46.95	46.95	
Wet soil + tare (g)	251.45		251.45		251.45		
Dry soil + tare (g)	230.85		230.85		230.85		
l are (g)	127.02	22.7	127.02	22.7	127.02	20.4	
Water content (%)	19.8	33./	19.8	33.7	19.8	38.4	
Dry unit weight (pci)	85.2	88.2	84.8	88.2	80.2	82.7	
void ratio, e, for assumed Gs	0.98	0.91	0.99	0.91	1.10	1.04	
$\frac{1}{4}$./	100.0	J4.J	100.0 Initial	40./ Pre-shear	100.0	
$\psi(acg) = 40$	F	Water	content (%)	10.8	35 3		
*Pre-shear saturation set to 100% for phase calculations		Dry unit	weight (pcf)	83.4	86.4		

Entered by: Reviewed:

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023

Location: Bluffdale, Utah

Boring No.: B-04 Sample: Depth: 15.0'

Nominal norn	nal stress = 48	00 psf	Nominal norn	nal stress = 24	00 psf	Nominal norn	nal stress = 12	00 psf
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
0.000	0	0.000	0.000	0	0.000	0.000	0	0.000
0.002	302	0.000	0.002	206	0.000	0.002	207	0.000
0.005	592	0.000	0.005	369	-0.001	0.005	292	0.000
0.007	850	0.000	0.007	496	-0.001	0.007	393	0.000
0.010	1126	0.000	0.010	625	-0.002	0.010	485	0.000
0.012	1343	-0.001	0.012	722	-0.002	0.012	549	0.000
0.017	1736	-0.001	0.017	935	-0.003	0.017	665	0.000
0.022	2082	-0.002	0.022	1145	-0.004	0.022	/56	0.000
0.027	2457	-0.002	0.027	1528	-0.004	0.027	849	0.000
0.032	3134	-0.002	0.032	1308	-0.005	0.032	1027	0.000
0.037	3464	-0.002	0.037	1898	-0.000	0.037	1105	0.000
0.042	3743	-0.003	0.042	2098	-0.006	0.047	1188	0.001
0.052	3991	-0.003	0.052	2267	-0.006	0.052	1257	0.001
0.057	4263	-0.004	0.057	2418	-0.006	0.057	1327	0.002
0.062	4477	-0.004	0.062	2599	-0.006	0.062	1397	0.002
0.067	4699	-0.004	0.067	2727	-0.006	0.067	1458	0.002
0.072	4885	-0.004	0.072	2856	-0.005	0.072	1510	0.003
0.077	5084	-0.003	0.077	2969	-0.005	0.077	1563	0.003
0.082	5229	-0.003	0.082	3063	-0.004	0.082	1608	0.003
0.087	5353	-0.003	0.087	3135	-0.004	0.087	1654	0.004
0.092	5469	-0.002	0.092	3197	-0.003	0.092	1708	0.004
0.097	5554	-0.002	0.097	3200	-0.003	0.097	1/55	0.004
0.102	5740	-0.002	0.102	3349	-0.002	0.102	1841	0.005
0.112	5797	-0.001	0.112	3375	-0.001	0.112	1878	0.006
0.117	5854	-0.001	0.112	3392	0.000	0.117	1918	0.006
0.122	5885	-0.001	0.122	3370	0.000	0.122	1948	0.007
0.127	5882	0.000	0.127	3375	0.001	0.127	1989	0.007
0.132	5900	0.000	0.132	3379	0.001	0.132	2027	0.008
0.137	5929	0.000	0.137	3371	0.001	0.137	2065	0.008
0.142	5939	0.001	0.142	3343	0.002	0.142	2104	0.009
0.147	5952	0.001	0.147	3336	0.002	0.147	2136	0.009
0.152	5939	0.001	0.152	3332	0.002	0.152	2173	0.010
0.157	5919	0.001	0.137	3307	0.003	0.137	2200	0.010
0.162	5880	0.002	0.162	3308	0.003	0.162	2258	0.010
0.172	5867	0.002	0.172	3322	0.004	0.172	2279	0.011
0.177	5841	0.002	0.177	3328	0.004	0.177	2296	0.011
0.182	5828	0.003	0.182	3332	0.004	0.182	2321	0.012
0.187	5815	0.003	0.187	3327	0.004	0.187	2353	0.012
0.192	5787	0.004	0.192	3341	0.004	0.192	2373	0.012
0.197	5738	0.004	0.197	3353	0.004	0.197	2400	0.013
0.202	5673	0.005	0.202	3359	0.004	0.202	2432	0.013
0.207	5632	0.005	0.207	3373	0.004	0.207	2453	0.014
0.212	5520	0.005	0.212	3394	0.005	0.212	2474	0.014
0.217	5500	0.006	0.217	3394	0.005	0.217	2504	0.014
0.222	5456	0.000	0.222	3400	0.005	0.222	2577	0.015
0.232	5412	0.006	0.232	3415	0.005	0.232	2611	0.015
0.237	5386	0.007	0.237	3427	0.005	0.237	2637	0.016
0.242	5358	0.007	0.242	3437	0.005	0.242	2669	0.016
0.247	5311	0.007	0.247	3448	0.005	0.247	2689	0.016
0.252	5278	0.007	0.252	3454	0.006	0.252	2716	0.017
0.257	5236	0.007	0.257	3454	0.006	0.257	2726	0.017
0.262	5203	0.007	0.262	3461	0.006	0.262	2754	0.018
0.267	5182	0.007	0.267	3472	0.006	0.267	2776	0.018
0.272	5112	0.007	0.272	34/5	0.006	0.272	2821	0.018
0.277	5087	0.007	0.277	34/3 3402	0.006	0.277	2004 2883	0.018
0.282	5063	0.007	0.282	3508	0.000	0.282	2005	0.019
0.292	5032	0.007	0.292	3495	0.006	0.292	2942	0.020
0.297	5007	0.007	0.297	3474	0.006	0.297	2979	0.020
	-	-	-		-	-		•

time (min)

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

202

Direct Shear Test for Soils Under Dr	ained Co	<u>onditions</u>				i i i	SES
(ASTM D3080)						© I	GES 2009, 2024
Project: JVWTP Filter & Chem Fe	ed Upgra	de	Boi	ring No.:	Bulk-01		
No: 00823-023	10			Sample:			
Location: Bluffdale, Utah				Depth:	0-2'		
Date: 1/8/2024			Sample D	Description:	Brown silty	clavev sand	with gravel
Bv: PW			I Sa	ample type.	Laboratory	, compacted	8
Test type: Inundated			Drv	unit weight	114.6	ncf	
Lateral displacement (in.): 0.3			Diy	anne weight at	11.9	(%) w	
Shear rate (in./min): 0.0082			Com	paction spe	cifications:	95% of	
Specific gravity, Gs: 2.70	Assumed			1 1		ASTM D15	557B
	Sam	ple 1	Samj	ple 2	Sam	ple 3	1
Nominal normal stress (psf)	60	000	30	00	15	500	
Peak shear stress (psf)	48	349	2982		1934		
Lateral displacement at peak (in)	0.3	300	0.064		0.0	039	
Load Duration (min)	12	.81	12	96	13	311	
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear	
Sample height (in)	1.003	0.964	1.003	0.954	1.001	0.982	
Sample diameter (in)	2.413	2.413	2.408	2.408	2.413	2.413	
Wt. rings $+$ wet soil (g)	198.18	202.46	198.49	202.04	199.67	205.46	
Wt. rings (g)	43.28	43.28	44.22	44.22	45.08	45.08	
Wet soil + tare (g) Dreagil + tare (c)	299.37		299.37		299.37		
Dry soll + tare (g) Tare (g)	200.04		200.04		200.04		
Water content $\binom{0}{2}$	120.05	15.3	128.03	14.8	128.03	16.4	
Dry unit weight (ncf)	1147	119.3	114 7	120.5	114 7	116.4	
Void ratio e for assumed Gs	0.47	0.41	0.47	0.40	0.47	0.44	
Saturation (%)*	70.0	100.0	70.0	100.0	70.0	100.0	
φ' (deg) 33	,	Average o	of 3 samples	Initial	Pre-shear		8
c' (psf) 1001		Water	content (%)	12.2	15.5		
*Pre-shear saturation set to 100% for phase calculations	-	Dry unit	weight (pcf)	114.7	118.9		
£ 5000							

Comments:

Test specimens remolded to 95% of maximum dry unit weight at optimum water content using material passing the No. 4 sieve. Test specimens swelled upon inundation and at 100 psf load steps.

Entered by:_____ Reviewed:_____

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023

Location: Bluffdale, Utah

Boring No.: Bulk-01 Sample:

Depth: 0-2'

Nominal normal stress = 6000 psf			Nominal norr	nal stress = 30	00 psf	Nominal normal stress = 1500 psf			
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal	
Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	
0.000	0	0.000	0.000	0	0.000	0.000	0	0.000	
0.002	252	0.000	0.002	20	0.000	0.002	12	0.000	
0.005	524	0.000	0.005	170	0.000	0.005	422	0.000	
0.007	957	0.000	0.007	487	0.000	0.007	568	-0.001	
0.010	1265	0.000	0.010	796	0.000	0.010	750	-0.001	
0.012	1545	0.000	0.012	1057	0.000	0.012	1038	-0.001	
0.014	2233	-0.001	0.014	1738	0.000	0.014	1292	-0.001	
0.024	2592	-0.001	0.024	2054	0.000	0.024	1780	0.000	
0.029	2876	-0.001	0.029	2330	0.000	0.029	1875	0.001	
0.034	3064	-0.001	0.034	2534	0.000	0.034	1926	0.003	
0.039	3220	-0.001	0.039	2683	0.001	0.039	1934	0.004	
0.044	3364	0.000	0.044	2802	0.002	0.044	1934	0.005	
0.049	3488	0.000	0.049	2889	0.003	0.049	1905	0.006	
0.054	3576	0.001	0.054	2950	0.004	0.054	1871	0.006	
0.059	3663	0.002	0.059	2975	0.005	0.059	1837	0.008	
0.064	3733	0.002	0.064	2982	0.006	0.064	1824	0.008	
0.009	3904	0.002	0.009	2908	0.000	0.009	1773	0.009	
0.079	3982	0.003	0.079	2911	0.008	0.079	1737	0.010	
0.084	4066	0.004	0.084	2877	0.008	0.084	1706	0.011	
0.089	4149	0.004	0.089	2836	0.009	0.089	1664	0.011	
0.094	4208	0.004	0.094	2801	0.009	0.094	1630	0.012	
0.099	4254	0.005	0.099	2754	0.010	0.099	1585	0.012	
0.104	4291	0.005	0.104	2725	0.010	0.104	1554	0.012	
0.109	4313	0.005	0.109	2692	0.010	0.109	1532	0.012	
0.114	4330	0.005	0.114	2659	0.010	0.114	1510	0.012	
0.119	4338	0.006	0.119	2623	0.011	0.119	1488	0.012	
0.124	4340	0.006	0.124	2595	0.011	0.124	1478	0.013	
0.129	4336	0.000	0.129	2503	0.011	0.129	1470	0.013	
0.139	4318	0.007	0.139	2502	0.010	0.139	1468	0.013	
0.144	4298	0.007	0.144	2489	0.010	0.144	1472	0.013	
0.149	4284	0.007	0.149	2477	0.010	0.149	1471	0.013	
0.154	4283	0.007	0.154	2464	0.010	0.154	1471	0.013	
0.159	4286	0.007	0.159	2459	0.009	0.159	1466	0.013	
0.164	4294	0.006	0.164	2449	0.009	0.164	1458	0.013	
0.169	4305	0.006	0.169	2472	0.009	0.169	1464	0.013	
0.174	4322	0.006	0.174	2472	0.009	0.174	1403	0.013	
0.184	4369	0.005	0.179	2471	0.009	0.179	1461	0.013	
0.189	4393	0.005	0.188	2483	0.009	0.189	1465	0.013	
0.194	4417	0.005	0.193	2491	0.009	0.194	1453	0.013	
0.199	4443	0.005	0.198	2497	0.008	0.199	1444	0.013	
0.204	4475	0.005	0.203	2501	0.008	0.204	1448	0.013	
0.209	4490	0.005	0.208	2506	0.008	0.208	1441	0.013	
0.214	4511	0.005	0.213	2518	0.008	0.213	1449	0.013	
0.218	4537	0.005	0.218	2523	0.008	0.218	1449	0.013	
0.224	4552	0.004	0.223	2536	0.008	0.223	1452	0.013	
0.228	4574	0.004	0.228	2530	0.008	0.228	1455	0.013	
0.233	4612	0.004	0.233	2535	0.008	0.233	1450	0.013	
0.243	4640	0.004	0.233	2532	0.008	0.233	1450	0.013	
0.248	4659	0.004	0.248	2521	0.008	0.248	1440	0.013	
0.253	4672	0.004	0.253	2517	0.008	0.253	1448	0.013	
0.258	4687	0.004	0.258	2516	0.008	0.258	1445	0.013	
0.263	4702	0.004	0.263	2526	0.008	0.263	1450	0.013	
0.268	4722	0.003	0.268	2524	0.008	0.268	1444	0.013	
0.273	4736	0.003	0.273	2515	0.008	0.273	1446	0.014	
0.278	4760	0.003	0.278	2504	0.008	0.278	1422	0.014	
0.283	4/80	0.003	0.283	2497	0.008	0.283	1434	0.014	
0.288	4/98 4820	0.003	0.288	2490	0.008	0.288	1430	0.014	
0.298	4847	0.003	0.298	2474	0.008	0.298	1424	0.014	
0.300	4849	0.003	0.300	2475	0.008	0.300	1427	0.014	
•	-							1	

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

© IGES 2009, 2024

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023 Location: Bluffdale, Utah

Direct Shear Test for Soils Under Di				10	SES		
(ASTM D3080)						© IGE	ES 2009, 2024
Project: JVWTP Filter & Chem Fe	Boring No.: Bulk-02						
No: 00823-023	Sample:						
Location: Bluffdale, Utah	Depth: 0-2'						
Date: 1/8/2024			Sample Description: Brown silty, clayey sand with gr				
By: PW			Sample type: Laboratory compacted				
Tost trips: Inundated			Dreumiterricht 1111 met				
Lateral diantegement (in):			Dry unit weight 111.1 pcf				
Shoor rate (in /min): 0.006		at 11.9 (%) W					
Sheaf fate (iii./iiiii). 0.0000	Assumed		Com	paction spe	cifications.	9570 01 ASTM D14	557B
Specific gravity, OS. 2.70	Assumed		Seasi		ASTM DI357B		
	Specimen I		Specimen 2		Specimen 3		
Nominal normal stress (psf)	6000		2115		1300		
Peak shear stress (pst)	4/23		0.207		1/45		4
Lateral displacement at peak (in)	0.297		0.297		0.032		
Load Duration (min)	14	P 1	14.	<u> </u>	14	F/0	
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear	
Specimen height (in)	1.003	0.980	0.997	0.980	0.998	0.994	
Specimen diameter (in)	2.413	2.413	2.412	2.412	2.414	2.414	
Wt. rings + wet soil (g)	193.39	201.16	195.48	203.65	194.33	203.48	
Wt. rings (g)	43.27	43.27	46.37	46.37	44.81	44.81	
Wet soil + tare (g)	198.63		198.63		198.63		
Dry soil + tare (g)	191.17		191.17		191.17		
l are (g)	128.58	15 5	128.58	10.0	128.58	10.0	
Water content (%)	11.9	17.7	11.9	18.0	11.9	18.8	
Dry unit weight (pcf)	111.4	114.0	111.4	113.3	111.4	111.8	
Void ratio, e, for assumed Gs	0.51	0.48	0.51	0.49	0.51	0.51	
Saturation (%)*		100.0	627	100.0	62.8	100.0	
	02.7	100.0	02.7	T :: 1	D 1		4
¢'(deg) 33	02.7 A	Average of 3	3 specimens	Initial	Pre-shear		

Comments:

Test specimens swelled upon inundation and at 125 and 375 psf load steps.

Entered by:_____ Reviewed:

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

Project: JVWTP Filter & Chem Feed Upgrade No: 00823-023

Location: Bluffdale, Utah

Boring No.: Bulk-02 Sample: Depth: 0-2'

Nominal normal stress = 6000 psf			Nominal norn	nal stress = 30	00 psf	Nominal normal stress = 1500 psf			
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal	
Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	
0.000	0	0.000	0.000	0	0.000	0.000	0	0.000	
0.002	264	0.000	0.002	248	0.000	0.002	311	0.000	
0.005	738	0.000	0.005	555	0.000	0.005	564	0.000	
0.007	1022	0.000	0.007	698	0.000	0.007	817	0.000	
0.010	1265	0.000	0.010	909	0.000	0.010	1001	0.000	
0.012	1550	0.000	0.012	1040	0.000	0.012	1139	0.000	
0.017	1977	-0.001	0.017	1317	0.000	0.017	1324	0.001	
0.022	2381	-0.001	0.022	1591	0.000	0.022	1471	0.001	
0.027	2683	-0.001	0.027	1825	0.000	0.027	1560	0.002	
0.032	3248	-0.001	0.032	2141	0.000	0.032	1684	0.003	
0.042	3424	-0.001	0.042	2282	0.000	0.042	1720	0.005	
0.047	3574	-0.001	0.047	2395	0.001	0.047	1736	0.006	
0.052	3685	-0.001	0.052	2498	0.002	0.052	1745	0.008	
0.057	3778	-0.001	0.057	2561	0.002	0.057	1744	0.008	
0.062	3845	-0.001	0.062	2610	0.003	0.062	1731	0.010	
0.067	3902	0.000	0.067	2642	0.004	0.067	1709	0.011	
0.072	3944	0.000	0.072	2665	0.004	0.072	1678	0.011	
0.077	3985	0.000	0.077	2678	0.004	0.077	1633	0.012	
0.082	4019	0.000	0.082	2673	0.005	0.082	1509	0.012	
0.087	4039	0.000	0.087	2673	0.005	0.087	1320	0.012	
0.092	4073	0.000	0.092	2699	0.005	0.092	1458	0.012	
0.102	4065	0.001	0.102	2710	0.005	0.102	1438	0.012	
0.107	4083	0.001	0.107	2719	0.005	0.107	1429	0.012	
0.112	4096	0.001	0.112	2746	0.005	0.112	1428	0.012	
0.117	4107	0.001	0.117	2769	0.005	0.117	1434	0.011	
0.122	4140	0.001	0.122	2793	0.005	0.122	1433	0.011	
0.127	4156	0.001	0.127	2815	0.005	0.127	1438	0.011	
0.132	4179	0.000	0.132	2835	0.005	0.132	1434	0.011	
0.137	4197	0.000	0.137	2851	0.005	0.137	1448	0.011	
0.142	4223	-0.001	0.142	2875	0.005	0.142	1467	0.011	
0.152	4252	-0.001	0.152	2891	0.005	0.152	1478	0.011	
0.157	4280	-0.001	0.157	2905	0.005	0.157	1486	0.011	
0.162	4306	-0.002	0.162	2911	0.005	0.162	1488	0.010	
0.167	4306	-0.002	0.167	2911	0.005	0.167	1491	0.010	
0.172	4334	-0.002	0.172	2917	0.004	0.172	1494	0.010	
0.177	4355	-0.002	0.177	2927	0.004	0.177	1502	0.010	
0.182	4308	-0.003	0.182	2932	0.004	0.182	1509	0.010	
0.187	4407	-0.003	0.187	2933	0.004	0.187	1513	0.010	
0.192	4420	-0.004	0.192	2947	0.004	0.192	1533	0.009	
0.202	4430	-0.004	0.202	2955	0.004	0.202	1544	0.009	
0.207	4456	-0.005	0.207	2962	0.004	0.207	1552	0.009	
0.212	4474	-0.005	0.212	2968	0.003	0.212	1549	0.009	
0.217	4492	-0.005	0.217	2976	0.003	0.217	1551	0.009	
0.222	4505	-0.005	0.222	2981	0.003	0.222	1552	0.008	
0.227	4529	-0.005	0.227	2989	0.003	0.227	1565	0.008	
0.232	4559	-0.006	0.232	2997	0.003	0.232	15/9	0.008	
0.237	4565	-0.000	0.237	3017	0.002	0.237	1601	0.008	
0.247	4575	-0.007	0.247	3027	0.002	0.247	1618	0.008	
0.252	4591	-0.007	0.252	3033	0.002	0.252	1629	0.008	
0.257	4609	-0.008	0.257	3041	0.001	0.257	1631	0.008	
0.262	4622	-0.008	0.262	3049	0.001	0.262	1633	0.008	
0.267	4637	-0.008	0.267	3057	0.001	0.267	1638	0.008	
0.272	4661	-0.009	0.272	3065	0.001	0.272	1651	0.008	
0.277	4671	-0.009	0.277	3082	0.001	0.277	1661	0.008	
0.282	4080 4607	-0.010	0.282	3101	0.001	0.282	100/	0.008	
0.207	4699	-0.011	0.207	3108	0.001	0.207	1669	0.008	
0.297	4723	-0.011	0.297	3115	0.000	0.297	1674	0.008	
	-	-	-	-		-	-	-	

10

time (min)

1

100

1000

10000

2.024

Direct Shear Test for Soils Under Drained Conditions

0.1

(ASTM D3080)

Minimum Laboratory Soil Resistivity, pH of Soil for Use in Corrosion Testing, and

Ions in Water by Chemically Suppressed Ion Chromatography (AASHTO T 288, T 289, ASTM D4327, and C1580)

Project: JVVWTP Filter & Chem Feed Upgrade No: 00823-023 Location: Bluffdale, Utah Date: 1/8/2024 By: JJ/SE

le	Boring No.		B-0	1			B-0	3	
ump nfo	Sample								
. S	Depth		2.5' and	1 5.0'		10.0'			
ıta	Wet soil + tare (g)		44.()0		43.92			
ter t då	Dry soil + tare (g)		41.3	39		41.68			
Wa nter	Tare (g)	23.96				23.58			
coi	Water content (%)		15.	0			12.	4	
ıta	pH		8.6	5			8.9)	
. da	Soluble chloride* (ppm)		<1	1			<1	1	
nem	Soluble sulfate** (ppm)		<1	1			16		
G									
	Pin method		2				2		
	Soil box		Miller S	Small			Miller S	Small	
		Approximate Soil condition	Resistance Reading	Soil Box Multiplier	Resistivity	Approximate Soil condition (%)	Resistance Reading	Soil Box Multiplier	Resistivity
		As is	17300	0.67	11591	As is	5990	0.67	4013
		+3	11400	0.67	7638	+3	4290	0.67	2874
		+6	10600	0.67	7102	+6	3160	0.67	2117
ata		+9	11200	0.67	7504	+9	2580	0.67	1729
ty d						+12	2420	0.67	1621
tivi						+15	2510	0.67	1682
esis									
Ч									
	Minimum resistivity (Ω-cm)	vity cm) 7102				162	21		

* Performed by Chemtech-Ford using EPA 300.0

** Performed by Chemtech-Ford using ASTM C1580

Entered by:	
Reviewed:	

Minimum Laboratory Soil Resistivity, pH of Soil for Use in Corrosion Testing, and

Ions in Water by Chemically Suppressed Ion Chromatography (AASHTO T 288, T 289, ASTM D4327, and C1580)

Project: JVVWTP Filter & Chem Feed Upgrade No: 00823-023 Location: Bluffdale, Utah Date: 1/8/2024 By: JJ/SE

le	Boring No.		B-0	4			Bulk	-01		
amp nfo	Sample									
S	Depth		5.0)'		0-2'				
ata	Wet soil + tare (g)		44.6	56		44.82				
ter t dê	Dry soil + tare (g)		41.9	97		42.71				
Wa Iten	Tare (g)	23.49				23.37				
c01	Water content (%)		14.6				10.	9		
ıta	pH		9.0)			8.0)		
ı. da	Soluble chloride* (ppm)		<12	2			<1	1		
nem	Soluble sulfate** (ppm)		21				<1	1		
Cł										
	Pin method		2				2			
	Soil box		Miller S	Small			Miller S	Small		
		Approximate				Approximate				
		Soil	Resistance	Soil Box	D	Soil	Resistance	Soil Box		
		condition	Reading	Multiplier	Resistivity	condition	Reading	Multiplier	Resistivity	
		(%)	(Ω)	(cm)	$(\Omega-cm)$	(%)	(Ω)	(cm)	(Ω-cm)	
		As is	4990	0.67	3343	As is	11740	0.67	7866	
		+3	3570	0.67	2392	+3	8620	0.67	5775	
B		+6	3550	0.67	2379	+6	5790	0.67	3879	
data		+9	2460	0.67	1648	+9	5110	0.67	3424	
ity		+12	2200	0.67	1474	+12	5110	0.67	3424	
stiv		+15	1900	0.67	1273					
cesi		+18	2090	0.67	1400					
Å										
	Minimum resistivity (Ω-cm)	esistivity 1273				342	4			

* Performed by Chemtech-Ford using EPA 300.0

** Performed by Chemtech-Ford using ASTM C1580

Entered by:	
Reviewed:	

Minimum Laboratory Soil Resistivity, pH of Soil for Use in Corrosion Testing, and

Ions in Water by Chemically Suppressed Ion Chromatography (AASHTO T 288, T 289, ASTM D4327, and C1580)

Project: JVVWTP Filter & Chem Feed Upgrade No: 00823-023 Location: Bluffdale, Utah Date: 1/8/2024 By: JJ/SE

· le	Boring No.		Bulk-	-02					
amp nfo	Sample								
. Si	Depth		0-2						
ata	Wet soil + tare (g)		44.06						
uter ht då	Dry soil + tare (g)		41.87						
Wa nter	Tare (g)		23.4	18					
coc	Water content (%)		11.	9					
ıta	pH		8.1						
. da	Soluble chloride* (ppm)		<1	1					
nem	Soluble sulfate** (ppm)		<1	1					
C									
	Pin method		2						
	Soil box		Miller S	Small					
		Approximate				Approximate			
		Soil	Resistance	Soil Box	D	Soil	Resistance	Soil Box	.
		condition	Reading	Multiplier	Resistivity	condition	Reading	Multiplier	Resistivity
		(%)	<u>(Ω)</u>	(cm)	(Ω-cm)	(%)	(Ω)	(cm)	$(\Omega-cm)$
		As is	13390	0.67	89/1				
		+3	10150	0.67	6801				
a		+6	5130	0.67	3437				
dat		+9	4510	0.67	3022				
/ity		+12	4220	0.67	2827				
stiv		+15	4110	0.67	2754				
Resi		+18	4340	0.67	2908				
I									
	Minimum resistivity (Ω-cm)		275	4					

* Performed by Chemtech-Ford using EPA 300.0

** Performed by Chemtech-Ford using ASTM C1580

Entered by:	
Reviewed:	

Geotechnical Report Jordan Valley Water Treatment Plant Filter & Chemical Feed Upgrades Project No. 00823-023

Appendix D

Geotechnical Report Jordan Valley Water Treatment Plant Filter & Chemical Feed Upgrades Project No. 00823-023

Geophysics Report

5 January 2024

Jared Hawes IGES, Inc. 2702 S 1030 W, Suite 10 South Salt Lake, UT 84119 jaredh@igesinc.com (801) 270-9400

RE: SEISMIC VELOCITY SURVEY (V_{S100}) – Bluffdale, UT

Based on the project objective and site conditions, IGES conducted a shear wave velocity survey at the water treatment facility in Bluffdale, UT (Figure 1). The objective of the test is to determine the shear wave velocity profile of the near surface V_{S100} for the purpose of determining the seismic site class and ground motion studies.

Seismic Shear Wave Velocity Survey

Seismic Surface Waves methods such as MASW (Multichannel Analysis of Surface Waves), MAM (Microtremor Array Measurements), and ReMi (Refraction Microtremor) use the dispersive characteristics of surface waves to determine the variation of the seismic shear wave velocity with depth. Velocity data are derived by analyzing seismic surface waves generated by a controlled impulse or by random ambient sources and received by an array of geophones. The ambient MAM data is supplemented with 10 minutes of hammer blows to produce a smooth broad-spectrum curve.

The recording parameters used for the survey are shown in Table 1 with the approximate location shown in Figure 1. The V_{S100} sounding is centered at approximately 40.47227°, -111.96710°.

Figure A1 shows the dispersion curve of the data from the Vs_{100} with phase velocity (ft/s) of the surface wave as a function of frequency (Hz). Figure A2 shows the shear wave velocity profile (a 1-D sounding of velocity as a function of depth) modeled from the dispersion curve. The average shear wave velocity for the near surface is calculated to be 1,784.6 ft/s.

IGES, Inc. 5 January 2024 Page 2 of 7

Test location	Bluffdale, UT
Test Date	12/11/2023
Recording instrument	Summit II Compact
S/N	SUX1018
Geophone natural period	4.5 Hz.
Geophone/station spacing	16.4 feet
Number of channels	24
Spread length / geometry	377 feet
Sample rate	4 milliseconds
Number of samples	15,000/trace
Record length	60 seconds
Total recording time / records	30 minutes
Low pass filter	½ Nyquist
Low cut filter	1 Hz.
Seismic source	12 lb. hammer (10 minutes)
Source location	-30 foot offset
Analysis software	SeisImager™ Geometrics, Inc.

Table 1: Test recording parameters.

Figure 1: Shear wave velocity (V_{S100}) survey at the water treatment facility in Bluffdale, UT The test array length is 377 ft.

\\slc-dc16\geophysics\Projects\00823_Corollo\023_Bluffdale\Report\R00823-023.docx

IGES, Inc. 5 January 2024 Page 3 of 7

Limitations

The concept of risk is a significant consideration of geophysical analyses. The analytical means and methods used in performing geophysical analyses and development of resulting data set does not constitute an exact science. Analytical tools used by geophysicists are based on limited data, empirical correlations, judgment, and experience. As such the solutions and resulting data set presented in this report cannot be considered risk-free and constitute IGES's best professional opinion based on the available data at the time they were developed. IGES has developed the preceding analyses, at a minimum, in accordance with generally accepted professional geophysical practices and care being exercised in the project area at the time our services were performed. No warrantees, guarantees or other representations are made.

The information contained in this report is based on limited field testing and understanding of the project. The data used in the preparation of this report were obtained by IGES for this project. It is very likely that variations in the soil, rock, and groundwater conditions exist between and beyond the points explored. The nature and extent of the variations may not be evident until construction occurs and/or additional explorations are completed.

This report was prepared for our client's exclusive use on the project identified in the foregoing. Use of the data contained herein for any other project described in this report is at the user's sole risk. It is the client's responsibility to see that all parties to the project including the designer, contractor, subcontractors, etc. are made aware of this report in its entirety. The use of information contained in this report for bidding purposes should be done at the contractor's option and risk.

.000.

IGES, Inc. 5 January 2024 Page 4 of 7

We appreciate the opportunity to provide you with our services. If you have any questions, please contact the undersigned at your convenience at (801) 270-9400.

Respectfully submitted,

IGES, Inc.

Jam Mille

Yanni Philopoulos Geophysicist

Attachments: Appendix A

\\slc-dc16\geophysics\Projects\00823_Corollo\023_Bluffdale\Report\R00823-023.docx

R00823-023

IGES, Inc. 5 January 2024 Page 5 of 7

APPENDIX A

Shear Wave Velocity Soundings

Microtremor Array Measurement (MAM)

(Depth is measured in feet below ground surface. Velocity is reported in feet per second.)

IGES, Inc. 5 January 2024 Page 6 of 7

Figure A1: Dispersion curve of V_{S100} showing phase velocity (ft/s) as a function of frequency (Hz).

IGES, Inc. 5 January 2024 Page 7 of 7

\\slc-dc16\geophysics\Projects\00823_Corollo\023_Bluffdale\Report\R00823-023.docx

Geotechnical Report Jordan Valley Water Treatment Plant Filter & Chemical Feed Upgrades Project No. 00823-023

Seismic Data

USGS web services were down for some period of time and as a result this tool wasn't operational, resulting in *timeout* error. USGS web services are now operational so this tool should work as expected.

Latitude, Longitude: 40.47222334, -111.96682622

Goog	R			Man data @2024
Date			1/12/2024, 11:16:14 AM	
Design Cod	de Referen	ce Document	ASCE7-16	
Risk Categ	ory		II	
Site Class			C - Very Dense Soil and Soft Rock	
Туре	Value	Description		
SS	1.171	MCE _R ground motion. (for 0.2 seco	ond period)	
S ₁	0.424	MCE _R ground motion. (for 1.0s per	riod)	
S _{MS}	1.405	Site-modified spectral acceleration	value	
S _{M1}	0.637	Site-modified spectral acceleration	value	
S _{DS}	0.937	Numeric seismic design value at 0	.2 second SA	
S _{D1}	0.424	Numeric seismic design value at 1	.0 second SA	
Туре	Value	Description		
SDC	D	Seismic design category		
Fa	1.2	Site amplification factor at 0.2 second		
Fv	1.5	Site amplification factor at 1.0 second		
PGA	0.519	MCE _G peak ground acceleration		
F _{PGA}	1.2	Site amplification factor at PGA		
PGA _M	0.623	Site modified peak ground acceleration		
TL	8	Long-period transition period in seconds		
SsRT	1.171	Probabilistic risk-targeted ground motion. (0	.2 second)	
SsUH	1.346	Factored uniform-hazard (2% probability of	exceedance in 50 years) spectral acceleration	
SsD	2.418	Factored deterministic acceleration value. (0	0.2 second)	
S1RT	0.424	Probabilistic risk-targeted ground motion. (1	.0 second)	
S1UH	0.484	Factored uniform-hazard (2% probability of	exceedance in 50 years) spectral acceleration.	
S1D	0.9	Factored deterministic acceleration value. (1	1.0 second)	
PGAd	0.945	Factored deterministic acceleration value. (F	Peak Ground Acceleration)	
PGA _{UH}	0.519	Uniform-hazard (2% probability of exceedar	nce in 50 years) Peak Ground Acceleration	
C _{RS}	0.87	Mapped value of the risk coefficient at short	periods	

1/12/24, 11:16 AM

Туре	Value	Description	
C _{R1}	0.877	Mapped value of the risk coefficient at a period of 1 s	
Cv	1.134	Vertical coefficient	

DISCLAIMER

While the information presented on this website is believed to be correct, <u>SEAOC</u> /<u>OSHPD</u> and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in this web application should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. SEAOC / OSHPD do not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the seismic data provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the search results of this website.

SITE GROUND MOTION (ASCE 7-16 with Supplement 1)

Project: J Latitude: 4 Longitude: -	JVWTP Filter & Che 40.47222334 -111.96682622	m Feed Upgrades	Nu	nber: 00823-023 Date: 1/12/24 By: RT				
PGA S _s =	0.519 (g) 1.171 (g)	Mapped Peak Ground Accel Mapped spectral acceleration	eration at 0 second perio on for short periods	od				
S ₁ =	0.424 (g)	Mapped spectral acceleration	pped spectral acceleration for a 1-second period					
ite Class =	С	ASCE 7-16 Table	20.3-1					
F _{PGA} =	1.200	ASCE 7-16 Table	11.8-1					
F _a =	1.200	ASCE 7-16 Table	11.4-1					
F _v =	1.500	ASCE 7-16 Table	11.4-2					
PGA _M =	0.623	F _{pga} *PGA						
S _{DS} =	0.937	S _{DS} = Fa*Ss	*The m	aximum considered spectr	al response acceleratio	ons		
S _{D1} =	0.424	$S_{D1} = Fv^*S_1$	for sh	ort and 1-second periods				
T ₀ =	0.091	$T_0 = 0.2 * S_{D1} / S_{DS}$						
T _s =	0.453	$T_s = S_{D1}/S_{DS}$						
T _L =	8	Long period transition perio	d (Mapped Value)					
ΔT =	0.1	Time step for diagram						
		D	4			т		
		Response Sp	ectrum			(sec)		
						0.00		
			-Davion			0.09		
			Design			0.45	1	
			Design			0.45		
_	1.00 =		Design			0.45 0.55 0.65		
(g)	$1.00 \\ 0.90 $					0.45 0.55 0.65 0.75		
Sa (g)	$ \begin{array}{c} 1.00 \\ 0.90 \\ 0.80 \end{array} $					0.45 0.55 0.65 0.75 0.85		
n, Sa (g)	$ \begin{array}{c} 1.00 \\ 0.90 \\ 0.80 \\ 0.70 \end{array} $					0.45 0.55 0.65 0.75 0.85 0.95		
tion, Sa (g)	$ \begin{array}{c} 1.00 \\ 0.90 \\ 0.80 \\ 0.70 \\ 0.60 \end{array} $					0.45 0.55 0.65 0.75 0.85 0.95 1.05		
ration, Sa (g)	$ \begin{array}{c} 1.00\\ 0.90\\ 0.80\\ 0.70\\ 0.60\\ 0.60\\ \end{array} $					0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15		
eleration, Sa (g)	$ \begin{array}{c} 1.00\\ 0.90\\ 0.80\\ 0.70\\ 0.60\\ 0.50 \end{array} $					0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25		
cceleration, Sa (g)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35		
Acceleration, Sa (g)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35 1.45		
ıse Acceleration, Sa (g)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.45 0.55 0.65 0.75 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55		
oonse Acceleration, Sa (g)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.45 0.55 0.65 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65		
esponse Acceleration, Sa (g)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.45 0.55 0.65 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75		
Response Acceleration, Sa (g)	$ \begin{array}{c} 1.00\\ 0.90\\ 0.80\\ 0.70\\ 0.60\\ 0.50\\ 0.40\\ 0.30\\ 0.20\\ 0.10\\ 0.00\\ \end{array} $					0.45 0.55 0.65 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.45 1.55 1.65 1.75		
al Response Acceleration, Sa (g)	$ \begin{array}{c} 1.00\\ 0.90\\ 0.80\\ 0.70\\ 0.60\\ 0.50\\ 0.40\\ 0.30\\ 0.20\\ 0.10\\ 0.00\\ 0.00 \end{array} $	0.50	1.00	1.50	2.00	0.45 0.55 0.65 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.45 1.55 1.65 1.75 1.85 1.95 2.05		
ctral Response Acceleration, Sa (g)	$ \begin{array}{c} 1.00\\ 0.90\\ 0.80\\ 0.70\\ 0.60\\ 0.50\\ 0.40\\ 0.30\\ 0.20\\ 0.10\\ 0.00\\ 0.00 \end{array} $	0.50	1.00	1.50	2.00	0.45 0.55 0.65 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15		
pectral Response Acceleration, Sa (g)	$ \begin{array}{c} 1.00\\ 0.90\\ 0.80\\ 0.70\\ 0.60\\ 0.50\\ 0.40\\ 0.30\\ 0.20\\ 0.10\\ 0.00\\ 0.00 \end{array} $	0.50	1.00 Period, T (sec)	1.50	2.00	0.45 0.55 0.65 0.85 0.95 1.05 1.15 1.25 1.35 1.45 1.55 1.45 1.55 1.65 1.75 1.85 1.95 2.05 2.15 2.25		

Source: https://asce7hazardtool.online/

APPENDIX B - HAZARDOUS MATERIALS REPORT

Hazardous Materials Inspection

Filter Building at the Jordan Valley Water Treatment Plant

15305 S 3200 W Herriman, Utah 84065

February 3, 2025 | Terracon Project No. 61247358

Prepared for:

Carollo Engineers Salt Lake City, Utah, 84065

Nationwide Terracon.com

Facilities
Environmental
Geotechnical
Materials

February 3, 2025

Carollo Engineers 7090 South Union Park Avenue, Suite 600 Salt Lake City, Utah, 84065

- Attn: Mr. Alan Domonoske P: (801)233-2532 E: <u>adomonoske@carollo.com</u>
- Re: Asbestos, Lead, and Hazardous Materials Inspections Filter Building at the Jordan Valley Water Treatment Plant 15305 S 3200 W Herriman, Utah 84065 Terracon Project No. 61247358

Dear Mr. Domonoske,

The purpose of this report is to present the results of an asbestos inspection, lead coating screen, and hazardous materials assessment performed on January 7 and January 31, 2025, at the Filter Building at the Jordan Valley Water Treatment Plant in Herriman, Utah. This inspection was conducted in accordance with Terracon proposal No. P61247358 dated December 19, 2025. We understand that this inspection was requested in preparation for the planned renovation of the above-referenced building.

Asbestos containing materials were not identified during this assessment. Lead-containing coatings, universal waste, and other hazardous materials were identified during the assessment. Please refer to the attached report for details. Terracon appreciates the opportunity to provide this service to Carollo Engineers. If there are questions regarding this report, or if any further assistance is needed, please contact Terracon at (801) 545-8500.

Sincerely,

Terracon Consultants, Inc.

Prepared By:

Mr. Bracken Snyder Staff Industrial Hygienist State of Utah Inspector Certification No. ASB-8613

Reviewed by:

ola lumply

John Murphy, CIH, CSP Industrial Hygiene and Asbestos Program Manager State of Utah Asbestos Company Certification No. 289

Executive Summary

Terracon Consultants, Inc. (Terracon) conducted a pre-demolition hazardous materials inspection including asbestos, lead, and other hazardous materials at the Jordan Valley Water Treatment Plant located at 15305 S 3200 W Herriman, Utah 84065. The inspection was conducted on January 7 and January 31, 2025, by Mr. Bracken Snyder, Terracon employee, and State of Utah-certified Asbestos Inspector. The inspection was conducted at the request of Mr. Domonoske with Carollo Engineers.

Samples of suspect Asbestos-Containing Materials were collected from the chlorine room, loading dock, maintenance office, boiler room and filter gallery, as per the proposal, to determine asbestos content. Based on laboratory analysis, asbestos was not identified in samples collected.

Lead was detected on 27 of the 88 surfaces tested. Contractors doing any work in the building that may generate lead dust or fume should be informed of the presence of lead so that they may make appropriate decisions about protecting their workers from lead exposure.

Universal hazardous wastes and other hazardous materials were identified and quantified, but no samples were collected. These materials should be properly disposed of or recycled prior to renovation / demolition of the building.

The report that follows this Executive Summary should be read in its entirety because it includes important information, such as more specific details about findings, regulatory requirements, and recommendations.

Table Of Contents

1.0	Introduction1
	Project Objective1
2.0	Building/Area Description 1
3.0	Inspection Procedures1
	3.1. Visual Assessment for Asbestos1
	3.2. Physical Assessment for Asbestos2
	3.3. Sample Collection2
	3.4. Sample Analysis
4.0	Regulatory Overview
	4.1. Asbestos
	4.2. Lead-Containing Coatings4
	4.3. Hazardous Materials5
5.0	Findings And Recommendations 5
	5.1. Asbestos
	5.2. Lead-Containing Coatings5
	5.3. Inaccessible Areas and Assumed Materials7
	5.4. Hazardous Materials6
6.0	General Comments7

Appendices

- <u>Appendix A</u> Table 1: Asbestos Survey Sample Location Summary
- Appendix B Asbestos Sample Location Drawings
- <u>Appendix C</u> Laboratory Analytical Reports
- <u>Appendix D</u> Photo Logs
- <u>Appendix E</u> Lead Inspection Data Sheets
- Appendix F Universal Hazardous Waste Removal Cost Estimates
- <u>Appendix G</u> Certifications

1.0 Introduction

Terracon Consultants, Inc. (Terracon) conducted an asbestos inspection, lead coating screen, and universal waste and hazardous materials assessment at the Filter Building at the Jordan Valley Water Treatment Plant located at 15305 S 3200 W Herriman, Utah. The inspection was conducted on January 7 and January 31, 2025, by Mr. Bracken Snyder, State of Utah-certified Asbestos Inspector.

Samples of suspect ACM were collected to determine asbestos content. Measurements for lead-in-paint were made using an Olympus Delta Premium X-ray Fluorescence (XRF) Analyzer. Universal wastes and other hazardous materials were identified and quantified, so that they can be recycled or properly disposed of prior to renovation of the building.

1.1 Project Objective

The objective of this project was to identify the presence or absence of asbestos, leadcontaining coatings, universal waste, and other hazardous materials on the interior and exterior spaces of the building.

2.0 Building/Area Description

The Filter Building at the Jordan Valley Water Treatment Plant was constructed in 1971 with an addition constructed in the 1980s. The renovation will impact the chlorine room, loading dock, filter deck, filter gallery, maintenance office, and boiler room. Construction materials consisted of concrete masonry unit (CMU) block, concrete, drywall, and caulking.

3.0 Inspection Procedures

An asbestos inspection, lead coating screening, and universal waste and hazardous materials assessment were conducted by Mr. Bracken Snyder, Utah-certified Asbestos Inspector, who is qualified to evaluate lead coatings in residential and commercial buildings in Utah. Copies of asbestos inspector certifications are attached as <u>Appendix G</u>.

3.1 Visual Assessment for Asbestos

Terracon began the asbestos sampling activities with a visual assessment, including identification and inventory of readily visible and accessible Homogeneous Areas (HAs) of suspect ACM. A HAs consists of a material that appears similar throughout in terms of color, texture, and date of application. The assessment was conducted throughout visually accessible areas of the site. Materials identified as glass, wood, masonry, metal, plastic, or rubber were not considered suspect ACM.

3.2 Physical Assessment for Asbestos

A physical assessment of each HA of suspect ACM was conducted to assess the friability and condition of the materials. A friable material is defined by the United States Environmental Protection Agency (EPA) as a material that can be crumbled, pulverized, or reduced to powder by hand pressure when dry. Friability was assessed by physically touching suspect materials.

3.3 Sample Collection

3.3.1 Asbestos

Based on results of the visual observation of each building, bulk samples of suspect ACM were collected from the accessible interior and exterior building spaces. Bulk samples of suspect ACM were collected in accordance with AHERA sampling protocols using wet methods as applicable to reduce the potential for fiber release. Samples were placed in sealable containers and labeled with unique sample numbers using an indelible marker. Terracon collected 43 samples from 14 HAs of suspect ACM.

A table presenting suspect material descriptions, sample locations, and sample results are summarized in <u>Appendix A</u>. An asbestos sampling location drawing is provided in <u>Appendix B</u>. Although reasonable effort was made to inspect accessible suspect materials, additional suspect but unsampled materials could be in walls, in voids, or in other concealed areas.

3.3.2 Lead-Containing Coatings

Measurements for lead in paint were made using an Olympus Delta Premium XRF Analyzer (Serial Number 510179) with an X-ray tube source. The Olympus Delta XRF nondestructively measures lead concentrations in painted surfaces, regardless of the number of paint layers present. According to Olympus Delta, the lower limit of reliable quantitation for this instrument is 0.0001 milligrams of lead per square centimeter of surface area (mg/cm²) using the Olympus Delta tube-based Silicon Drift Detector (SDD) technology on surface coatings and materials based on a 120-second test time.

3.3.3 Lead-Containing Coatings

Universal wastes and other hazardous materials were identified and quantified, so that they can be recycled or properly disposed of prior to renovation or demolition, per EPA requirements. The Terracon inspectors visually inspected the building to identify and quantify the following materials but no samples were collected:

- batteries
- pesticides
- mercury-containing equipment

- lamps
- aerosol cans
- equipment containing chlorofluorocarbon (CFC) refrigerants
- equipment containing polychlorinated biphenyls (PCBs)

3.4 Sample Analysis

3.4.1 Asbestos

Samples of suspect ACM were delivered under standard chain-of-custody protocol to Eurofins EMLab P&K (NVLAP #500031-0) in Phoenix, Arizona, for analysis by Polarized Light Microscopy using EPA Method 600/R-93/116. The asbestos content, where applicable, was determined by microscopic visual estimation. A copy of the laboratory analytical report and chain-of-custody forms are provided in <u>Appendix C</u>.

3.4.2 Lead-Containing Coatings

Before and after the testing, the internal calibration of the Olympus Delta was checked by taking a minimum of two consecutive measurements on a red (1.0 to 1.2-mg/cm²) National Institute for Standards and Technology (NIST #2573) standard paint film. The calibration values obtained were compared to the calibration check tolerance values to ensure that the XRF was operating within the stated tolerance limits.

4.0 Regulatory Overview

4.1 Asbestos

The Utah Division of Air Quality (UDAQ) enforces the Asbestos NESHAP adopted by reference in the Utah Air Conservation Rules R307 Section 214-1. The owner or operator must provide UDAQ with written notification at least ten working days prior to the commencement of asbestos abatement activities that will disturb Regulated Asbestos Containing Material (RACM) in amounts greater than or equal to 3 square feet or 3 linear feet.

The asbestos NESHAP (40 CFR Part 61, Subpart M) regulates asbestos fiber emissions and asbestos waste disposal practices. The asbestos NESHAP regulation also requires the identification and classification of existing ACM according to friability prior to demolition or renovation activity. Friable ACM is a material containing more than 1% asbestos that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure. All friable ACM is considered RACM.

The asbestos NESHAP regulation classifies ACM as either RACM, Category I nonfriable ACM, or Category II nonfriable ACM. RACM includes all friable ACM; Category I nonfriable ACM that has become friable or has been or will be sanded, ground, cut, or abraded; and Category II nonfriable ACM that has been or is likely to become crumbled, pulverized, or

reduced to powder. Category I nonfriable ACM are asbestos-containing packings, gaskets, resilient floor coverings, resilient floor covering mastics, and asphalt roofing products that contain more than 1% asbestos. Category II nonfriable ACM are all other nonfriable materials other than Category I nonfriable ACM that contain more than 1% asbestos.

The Occupational Safety and Health Administration (OSHA) asbestos standard for construction (29 CFR 1926.1101) regulates workplace exposure to asbestos. The OSHA standard requires that employee exposure to airborne asbestos must not exceed established Permissible Exposure Limits (PELs). The OSHA standard classifies construction and maintenance activities that could disturb ACM and specifies work practices and precautions that employers must follow when engaging in each class of regulated work. The standard also specifies requirements for disturbing and handling materials with asbestos concentrations less than or equal to one percent.

4.2 Lead-Containing Coatings

According to the UDAQ, even though there is measurable lead in coated surfaces within a building, as long as the express purpose of future renovation or demolition work is not to "remove or abate lead," the work need not be treated as a lead abatement project. However, OSHA states that coatings having any measurable level of lead may pose a substantial exposure hazard during renovation or demolition work, depending upon the work performed.

The OSHA Lead in Construction Standard (29 CFR 1926.62) must be followed for work involving coated surfaces with any measurable concentration of lead. The standard requires, among other things, the following:

- initial worker training on the hazards of lead exposure, proper work practices, respiratory protection, and other topics
- an initial exposure assessment, by air monitoring
- hand-washing facilities and designated clean change and eating areas

The Lead in Construction Standard specifies that employers are responsible for ensuring that their employees are not exposed to airborne lead concentrations exceeding the PELs.¹

The presence of lead in demolition debris from nonresidential buildings has the potential to impose limitations on where and how the debris may be disposed. The Resource Conservation and Recovery Act (RCRA) requires each waste generator to determine if their wastes are hazardous. This can be determined either through generator knowledge or by

¹ See 29 CFR 1926(d) (2) Protection of employees during assessment of exposure.

testing. Toxicity Characteristic Leaching Procedure (TCLP) testing is the preferred method for determining if wastes are hazardous. The demolition wastes, if any, from this project should undergo TCLP testing prior to disposal to determine if they are hazardous.

4.3 Hazardous Materials

EPA's universal waste regulations streamline the hazardous waste management standards for certain categories of hazardous waste that are commonly generated by a wide variety of facilities. The streamlined regulations promote the collection and recycling of universal waste, ease the regulatory burden on generators that wish to collect these wastes and transporters of these wastes, and encourage the development of municipal and commercial programs to reduce the quantity of these wastes going to municipal solid waste landfills or combustors. The federal universal waste regulations are found in Title 40 of the Code of Federal Regulations (CFR) in part 273. and apply to five types of universal waste:

- Batteries
- Pesticides
- Mercury-Containing Equipment
- Lamps
- Aerosol Cans

The universal waste regulations require that these materials be managed in a way that prevents releases to the environment.

The EPA also regulates other types of wastes as hazardous, including CFC refrigerants, PCBcontaining materials, and others.

5.0 Findings And Recommendations

5.1 Asbestos

Terracon collected samples from suspect ACM HAs identified in the areas of renovation. Terracon collected 43 samples from 14 HAs from the building. Laboratory analysis indicates that asbestos was not identified in any of the HAs sampled.

Tables presenting suspect material descriptions, sample locations, and sample results for the/each building are presented in <u>Appendix A</u>. Asbestos sampling location drawings are provided in <u>Appendix B</u>. The laboratory analytical reports of sample results are provided in <u>Appendix C</u>. A photo log of HAs sampled from the/each building is provided in <u>Appendix D</u>.

5.2 Lead-Containing Coatings

One hundred and two measurements were taken with the XRF, including calibration. Twenty-seven surfaces contained lead according to the XRF measurement results.

OSHA regulates lead in construction work in any measurable concentration. Therefore, if workers perform sanding, grinding, welding, cutting, or any other activities that may create lead-containing dust or fume from surfaces containing lead, they must follow the requirements of the OSHA Lead in Construction Standard, 29 CFR 1926.62. It should be noted that OSHA does not accept XRF sampling data for determining that there is no lead present in a coating, as lead may be present at a concentration lower than the detection limit of the XRF instrument. Tables 1 and 2 in <u>Appendix E</u> show the results of surface coatings tested for lead.

Terracon recommends that personnel performing demolition or renovation activities that may disturb components with concentrations of lead above the designated analytical detection limit comply with the OSHA Lead in Construction Standard in order to minimize employee exposure.

5.3 Hazardous Materials

The following universal and hazardous waste materials were identified in the building during this assessment:

Quantity	Universal and Hazardous Waste Materials
136	Fluorescent lamps, 4-foot or less
68	Light ballasts
34	Light-Emitting Diode (LED)
6	Motion sensors
7	Electric heaters
1	Hot water heater
1	Emergency exit signs
1	Cationic polymer tote

1	Poly-aluminum chloride tote
18	Chlorine tanks
10	Misc chemicals

These materials should be recycled or properly disposed of prior to building renovation. A table estimating the costs associated with the removal and proper disposal of these items is presented in <u>Appendix F</u>.

5.4 Inaccessible Areas and Assumed Materials

Although all areas of the building were inspected, there is the potential for hidden, inaccessible materials that can be buried behind walls or underneath the concrete slab.

6.0 General Comments

This inspection was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions in the same locale. The results, findings, conclusions, and recommendations expressed in this report are based on conditions observed during our inspection of the building. The information contained in this report is relevant to the date on which this inspection was performed and should not be relied upon to represent conditions at a later date. This report has been prepared on behalf of and exclusively for use by Carollo Engineers. This report is not a bidding document. Contractors or consultants reviewing this report must draw their own conclusions regarding further investigation or remediation deemed necessary. Terracon does not warrant the work of regulatory agencies, laboratories, or other third parties supplying information that may have been used in the preparation of this report. No warranty, express or implied, is made. Appendix A Table 1: Asbestos Survey Sample Location Summary **Appendix A Table 1: Asbestos Survey Sample Location Summary** Jordan Valley Water Treatment Plant—Filter Building | Herriman, Utah February 3, 2025 | Terracon Project No. 61247358

Homogeneous Area (HA)	Description	Sample No.	Sample Location	Estimated Quantity	Lab Results	
HA-01	Concrete Masonry Unit block	7358-01	Chlorine room, west wall, North end centered	2,650 SF	All Layers - ND	
		7358-02	Chlorine room, northwest corner			
		7358-03	Chlorine room, east wall, centered			
		7358-04	Chlorine room, southeast corner			
		7358-05	Chlorine room, West wall centered			
HA-02		7358-06	Chlorine room, chlorine tub wall, southeast corner			
	Concrete/Cement	7358-07	Chlorine room, West wall, centered	5000 SF	All Layers - ND	
		7358-08	Chlorine room, south entryway step			
HA-03	Black cove base and mastic	7358-09	Chlorine room, east wall, south end centered		All Layers - ND	
		7358-10	Chlorine room, east wall, south end centered	200 LF		
			7358-11	Chlorine room, east wall, south end centered		
HA-04		7358-12	Chlorine room pump room, South centered			
	Tan cove base and mastic	7358-13	Chlorine room pump room, South centered	100 LF	All Layers - ND	
		7358-14	Chlorine room pump room, South centered			
		7358-15	Chlorine room west entry door			
HA-05	HA-05	White door caulking	7358-16	Chlorine room west entry door	100 LF	All Layers -
			7358-17	Chlorine room west entry door		

Facilities | Environmental | Geotechnical | Materials

Appendix A Table 1: Asbestos Survey Sample Location Summary Jordan Valley Water Treatment Plant—Filter Building | Herriman, Utah February 3, 2025 | Terracon Project No. 61247358

Homogeneous Area (HA)	Description	Sample No.	Sample Location	Estimated Quantity	Lab Results	
HA-06	Pipe gasket material	7358-18	Chlorine room, south end on piping	10 SF	All Layers - ND	
		7358-19	Chlorine room, south end on piping			
		7358-20	Chlorine room, south end on piping			
HA-07	Gap filler	7358-21	Chlorine room, east wall south end center on support beam	100 LF	All Layers - ND	
		7358-22	Chlorine room, east wall south end center on support beam			
		7358-23	Chlorine room, west wall south end on support beam			
HA-08	Brick and mortar	7358-24	Chlorine loading dock, southeast corner	500 SF	All Layers - ND	
		7358-25	Chlorine loading dock, southeast corner			
			7358-26	Chlorine loading dock, southeast corner		
HA-09	HA-09	Concrete/Cement	7358-27	Chlorine loading dock, east side, south end centered		All Layers -
			7358-28	Chlorine loading dock, east side, south end centered	2,200 SF	ND
HA-10		7358-29	Maintenance office, southeast corner		All Lavers -	
		7358-30	Maintenance office, southeast corner			
	HA-10	Drywall system	7358-31	Maintenance office, southeast corner	460 SF	ND

Facilities | Environmental | Geotechnical | Materials

Appendix A Table 1: Asbestos Survey Sample Location Summary Jordan Valley Water Treatment Plant—Filter Building | Herriman, Utah February 3, 2025 | Terracon Project No. 61247358

Homogeneous Area (HA)	Description	Sample No.	Sample Location	Estimated Quantity	Lab Results
HA-11	Concrete/Cement	7358-32	Boiler room, west wall centered	11,000 SF	All Layers - ND
		7358-33	Filter gallery, room 1, northeast corner		
		7358-34	Filter gallery, room 2, northeast corner		
HA-12	Epoxy floor	7358-35	Maintenance office, east centered	650 SF	All Layers - ND
		7358-36	Maintenance office, east centered		
		7358-37	Maintenance office, east centered		
HA-13	Gap filler	7358-38	Boiler room, west centered	100 SF	All Layers - ND
		7358-39	Filter gallery, doorway between room 1 and room 2		
		7358-40	Filter gallery, doorway between room 1 and room		
HA-14	Pipe gasket material	7358-41	Boiler room, west centered	10 SF	All Layers -
		7358-42	Filter gallery, room 1, southeast corner		
			7358-43	Filter gallery, room 2, southeast corner	

Key:

ND = none detected SF = square feet LF = linear feet NA = not applicable

Facilities | Environmental | Geotechnical | Materials
Appendix B Asbestos Sample Location Drawing

Appendix C Laboratory Analytical Reports

Built Environment Testing

Report for:

Bracken Snyder Terracon Consultants, Inc. - Utah 6952 S. High Tech Dr., Suite B Midvale, UT 84047

Regarding:

Eurofins Aerotech Built Environment Testing, LLC Project: 61247358 EML ID: 3906210

Approved by:

Rence Luna-Frapezynski

Approved Signatory Renee Luna-Trepczynski

Dates of Analysis: Asbestos PLM: 01-16-2025

Service SOPs: Asbestos PLM (EPA 40CFR App E to Sub E of Part 763 & EPA METHOD 600/R-93-116, SOP EM-AS-S-1267) NVLAP Lab Code 500031-0

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. The results relate only to the samples as received and tested. The results include an inherent uncertainty of measurement associated with estimating percentages by polarized light microscopy. Measurement uncertainty data for sample results with >1% asbestos concentration can be provided when requested.

Eurofins Aerotech Built Environment Testing, LLC ("the Company"), a member of the Eurofins Built Environment Testing group of companies, shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins Aerotech Built Environment Testing, LLC

1501 West Knudsen Drive, Phoenix, AZ 85027 (800) 651-4802 www.eurofinsus.com/Built

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

ASBESTOS PLM REPORT

Total Samples Submitted:	44
Total Samples Analyzed:	44
Total Samples with Laver Ashestos Content > 1%:	0

Date of Sampling: 01-07-2025

Date of Receipt: 01-08-2025

Date of Report: 01-16-2025

Location: 7358-01, CMU Block Filler Lab ID-Version 19366037-1 Sample Layers Asbestos Content Gray Block with Paint ND

Sample Composite Homogeneity: Good

	Lab ID-Version [‡] : 1936603	8-1
Asbestos Conte	ent	

Sample Layers	Asbestos Content
Gray Block with Paint	ND
Sample Composite Homogeneity:	Good

Location: 7358-03, CMU Block Filler	Lab ID-Version‡: 19366039-1
Sample Layers	Asbestos Content
Gray Block with Paint	ND
Sample Composite Homogeneity:	Good

Location: 7358-04. CMU Block Filler

Location: 7358-02, CMU Block Filler

Location: 7358-04, CMU Block Filler	Lab ID-Version‡: 19366040-1
Sample Layers	Asbestos Content
Gray Block with Paint	ND
Sample Composite Homogeneity:	Good

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Date of Sampling: 01-07-2025

Date of Receipt: 01-08-2025

(800) 651-4802 www.eurofinsus.com/Built

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

ASBESTOS PLM REPORT

Location: 7358-05, CMU Block Filler

Sample Layers	Asbestos Content
Gray Block with Paint	ND
Sample Composite Homogeneity:	Good

Location: 7358-06, Cement/Concrete	Lab ID-Version‡: 19366042-1
Sample Layers	Asbestos Content
Gray Concrete	ND
Sample Composite Homogeneity:	Good

Location: 7358-07, Cement/Concrete	Lab ID-Version‡: 19366043-1
Sample Layers	Asbestos Content
Gray Concrete	ND
Sample Composite Homogeneity:	Good

Location:	7358-08,	Cement/Concrete
-----------	----------	------------------------

Location: 7550 vo, cement/concrete	
Sample Layers	Asbestos Content
Gray Concrete	ND
Sample Composite Homogeneity:	Good

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Date of Report: 01-16-2025

Sample C

Lab ID-Version[‡]: 19366044-1

Lab ID-Version : 19366041-1

1501 West Knudsen Drive, Phoenix, AZ 85027 (800) 651-4802 www.eurofinsus.com/Built

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

ASBESTOS PLM REPORT

Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

Lab ID-Version‡: 19366045-1

Location:	7358-09,	Black	Cove Base	&	Adhesive
-----------	----------	-------	------------------	---	----------

Sample Layers	Asbestos Content
Black Baseboard	ND
Dark Brown Mastic	ND
Yellow Mastic	ND
Semi-Transparent Mastic	ND
Composite Non-Asbestos Content:	< 1% Wollastonite
Sample Composite Homogeneity:	Poor

Location: 7358-10, Black Cove Base & Adhesive

Sample Layers	Asbestos Content
Black Baseboard	ND
Dark Brown Mastic	ND
Yellow Mastic	ND
Semi-Transparent Mastic	ND
Composite Non-Asbestos Content:	< 1% Wollastonite
Sample Composite Homogeneity:	Poor

Location: 7358-11, Black Cove Base & Adhesive

Lab ID-Version \$\$: 19366047-1

Lab ID-Version 19366046-1

Sample Layers	Asbestos Content
Black Baseboard	ND
Dark Brown Mastic	ND
Yellow Mastic	ND
Semi-Transparent Mastic	ND
Composite Non-Asbestos Content:	< 1% Wollastonite
Sample Composite Homogeneity:	Poor

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

ASBESTOS PLM REPORT

Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

Location: 7358-12, Tan Cove Base & Adhesive	Lab ID-Version‡: 19366048-1
Sample Layers	Asbestos Content
Tan Cove Base	ND
Black/Yellow Mastic	ND
Composite Non-Asbestos Content:	< 1% Cellulose
Sample Composite Homogeneity:	Moderate

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

ASBESTOS PLM REPORT

Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

Location: 7358-13, Tan Cove Base & Adhesive	Lab ID-Version‡: 19366049-1
Sample Layers	Asbestos Content
Tan Cove Base	ND
Black/Yellow Mastic	ND
Composite Non-Asbestos Content:	< 1% Cellulose
Sample Composite Homogeneity:	Moderate

Location: 7358-14, Tan Cove Base & Adhesive	Lab ID-Version‡: 19366050-1
Sample Layers	Asbestos Content
Tan Cove Base	ND
Black/Yellow Mastic	ND
Composite Non-Asbestos Content: < 1% Cellulose	
Sample Composite Homogeneity:	Moderate

Sample Layers	Asbestos Content
White Caulk	ND
Sample Composite Homogeneity:	Good

Location: 7358-16, White Door Caulking

Lab ID-Version 19366052-1 **Sample Layers** Asbestos Content White Caulk ND Sample Composite Homogeneity: Good

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Lab ID-Version 19366051-1

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

ASBESTOS PLM REPORT

Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

Location: 7358-17, White Door Caulking	Lab ID-Version‡: 19366053-1
Sample Layers	Asbestos Content
White Caulk	ND
Sample Composite Homogeneity:	Good
	·

Location: 7358-18, Pipe Gasket Material	Lab ID-Version‡: 19366054-1
Sample Layers	Asbestos Content
Black Gasket	ND
Sample Composite Homogeneity:	Good

Location: 7358-19, Pipe Gasket Material	Lab ID-Version‡: 19366055-1
Sample Layers	Asbestos Content
Black Gasket	ND
Sample Composite Homogeneity:	Good

Location: 7358-20, Pipe Gasket Material

Locution, reco 20,1 pe Susher Muterial	···· +
Sample Layers	Asbestos Content
Black Gasket	ND
Sample Composite Homogeneity:	Good

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Lab ID-Version[†]: 19366056-1

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

ASBESTOS PLM REPORT

Location: 7358-21, Gap Filler

Location: 7358-21, Gap Filler	Lab ID-Version‡: 19366057-1
Sample Layers	Asbestos Content
Gray Sealant with White Surface	ND
Sample Composite Homogeneity:	Good

Location: 7358-22, Gap Filler Lab ID-Version 19366058-1 Sample Layers **Asbestos Content** Gray Sealant with White Surface ND Sample Composite Homogeneity: Good

Location: 7358-23. Gap Filler

Sample Layers	Asbestos Content
Gray Sealant with White Surface	ND
Sample Composite Homogeneity:	Good

Location: 7358-24. Brick & Mortar

Sample Layers	Asbestos Content
Red Brick	ND
Gray Mortar	ND
Sample Composite Homogeneity: Moderate	

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Lab ID-Version 19366060-1

Lab ID-Version 19366059-1

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

ASBESTOS PLM REPORT

Location: 7358-25, Brick & Mortar

Location: 7358-25, Brick & Mortar	Lab ID-Version‡: 19366061-1
Sample Layers	Asbestos Content
Red Brick	ND
Gray Mortar	ND
Sample Composite Homogeneity:	Moderate

Location: 7358-26, Brick & Mortar	Lab ID-Version‡: 19366062-1
Sample Layers	Asbestos Content
Red Brick	ND
Gray Mortar	ND
Sample Composite Homogeneity:	Moderate

Location: 7358-27, Concrete

Sample Layers	Asbestos Content
Gray Concrete	ND
Sample Composite Homogeneity:	Moderate

Location: 7358-28, Concrete

Sample Layers	Asbestos Content
Gray Concrete	ND
Sample Composite Homogeneity:	Moderate

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Lab ID-Version 19366064-1

Lab ID-Version 19366063-1

Lab ID-Version[†]: 19366065-1

Lab ID-Version 19366067-1

Lab ID-Version 19366068-1

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358 Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

ASBESTOS PLM REPORT

Location: 7358-29, Drywall

Location, 7500 27, Di j wan	
Sample Layers	Asbestos Content
White Drywall with Brown Paper and Paint	ND
Composite Non-Asbestos Content:	10% Cellulose
Sample Composite Homogeneity:	Good

Location: 7358-30, Drywall	Lab ID-Version‡: 19366066-
Sample Layers	Asbestos Content
White Drywall with Brown Paper and Paint	ND
Composite Non-Asbestos Content:	10% Cellulose
Sample Composite Homogeneity:	Good

Location: 7358-31, Drywall

, .	•
Sample Layers	Asbestos Content
White Drywall with Brown Paper and Paint	ND
Composite Non-Asbestos Content:	10% Cellulose
Sample Composite Homogeneity:	Good

Location: 7358-32, Cement

Sample Layers	Asbestos Content
Gray Cementitious Material	ND
Sample Composite Homogeneity:	Good

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

ASBESTOS PLM REPORT

Location: 7358-33, Cement

Location: 7358-33, Cement	Lab ID-Version‡: 19366069-1
Sample Layers	Asbestos Content
Gray Cementitious Material with Paint	ND
Sample Composite Homogeneity:	Good

Location: 7358-34, Cement	Lab ID-Version‡: 19366070-1
Sample Layers	Asbestos Content
Gray Cementitious Material	ND
Sample Composite Homogeneity:	Good

Location: 7358-35, Epoxy Floor

Sample Layers	Asbestos Content					
Gray Flooring with Paint	ND					
Sample Composite Homogeneity:	Good					

Location: 7358-36, Epoxy Floor

,,,,,,,,, _	·
Sample Layers	Asbestos Content
Gray Flooring with Paint	ND
Sample Composite Homogeneity:	Good

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Lab ID-Version 19366072-1

Lab ID-Version 19366071-1

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

ASBESTOS PLM REPORT

Location: 7358-37 Enoxy Floor

Location. 7550 57, Lpoxy 11001						
Sample Layers	Asbestos Content					
Gray Flooring with Paint	ND					
Sample Composite Homogeneity:	Good					

Location: 7358-38, Gap Filler	Lab ID-Version‡: 19366074-1
Sample Layers	Asbestos Content
Gray Non-Fibrous Material	ND
Sample Composite Homogeneity:	Good

Location: 7358-39. Gap Filler

Location: 7358-39, Gap Filler	Lab ID-Version‡: 19366				
Sample Layers	Asbestos Content				
Black Semi-Fibrous Material	ND				
Composite Non-Asbestos Content:	< 1% Cellulose				
Sample Composite Homogeneity:	Good				

Location: 7358-40. Gan Filler

	•
Sample Layers	Asbestos Content
Black Semi-Fibrous Material	ND
Composite Non-Asbestos Content:	< 1% Cellulose
Sample Composite Homogeneity:	Good

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Lab ID-Version[‡]: 19366076-1

Lah ID-Version*: 19366073-1

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

ASBESTOS PLM REPORT

Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

Location: 7358-41, Pipe Gasket Materia Lab ID-Version 19366077-1 Sample Layers Asbestos Content Black Gasket ND Sample Composite Homogeneity: Good

Location: 7358-42, Pipe Gasket Materia	Lab ID-Version‡: 19366078-1
Sample Layers	Asbestos Content
Orange Gasket with Paint	ND
Sample Composite Homogeneity:	Good

Location: 7358-43, Pipe Gasket Materia	Lab ID-Version‡: 19366079-1
Sample Layers	Asbestos Content
Orange Gasket with Paint	ND
Sample Composite Homogeneity:	Good

Location: 7358-46, Insulation Tape	Lab ID-Version‡: 19366082				
Sample Layers	Asbestos Content				
Semi-Transparent Mastic	ND				
Silver Tape	ND				
Composite Non-Asbestos Content:	15% Cellulose				
Sample Composite Homogeneity:	Moderate				

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

All components not quantified as asbestos content and non-asbestos content are considered to be non-fibrous matrix components. Matrix components may include, but are not limited to, gypsum, paint, silicate minerals, vinyl, binder, calcium carbonate, tar, and foam.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

 \ddagger A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

1501 West Knudsen Drive, Phoenix, AZ 85027 (800) 651-4802 www.eurofinsus.com/Built

Client: Terracon Consultants, Inc. - Utah C/O: Bracken Snyder Re: 61247358

ASBESTOS PLM REPORT

PROJECT ANALYSTS AND SIGNATORY REPORT

Project Analysts

Analyst: Aaron Agajanian

Analyst: Renee Luna-Trepczynski

Date of Sampling: 01-07-2025 Date of Receipt: 01-08-2025 Date of Report: 01-16-2025

Analyst: Jason Bosse

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

[‡] A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Eurofins Aerotech Built Environment Testing, LLC

www.eu	rofinsus.com/Built	Built E	nvironmer	nt Testing	VARIA DIVERSI WA	www.	WM	m I	SB	ES	то	SA	AN	ALY	SI	S	
East: (866) Central: 180	871-1984 C0 651-4802				WWWWW		IAMA	NW -	EST	ED S	ERV	ICES	S Ch	eck bo	oxes t	below	i.
West: (866)	888-6653				003904	0210		_	5		PL	М		Inc		0	Other
	CONT	ACTINFORM	ATION			A	r			Bu	k			Sc	sα ii	Re	quests
Company:	Terracan	Acidiness 6952	High	Tech Dr. M	Midmir, Lytan								()				
Centact:	Bracker Sunder	Special Instructions	Please.	email rest	s to					-	12	ount	Coun	ut)	unt)		
Phone	(407) 840-7545	brack	cen. sn	yder@terrack	n.com				ount	ount	Cour	ŭ	PF (Cou	I Co		
PROJECT INFORMATION				TURN AROUND TIME CODES (TAT)					oint C	sint C	oint	400	1000	Point	Poir	A	
Project ID:	61247358	STD - Standard (DEFAULT)				740(00 PG	00 Pc	000 F	ount	ount	400	1000	He A	
Project Description	Jorden Valley water traiting	art fiont	ND-Ne	ed Business Day	or on weekends, will be	OSH	MId	PLM	it (20	nt (40	1 (10	1 CC	to) pot) pot	Flar	
Project Zip Code:	84065 Sampling Date & Time	12/25	SD - Sa Bush*	me Business Day	business day. Please alert	IT (N	TW	Sulk	Cour	Cour	COUL	Pol	: Poi	Moth	Meth	sis -	
PO Number	61247358 Sampled By 8	action Sydu	'Please for locati	call Client Services one with Rush	analysis needs.	r Cour	IA with	ostos E	Paint	Point	Point	/imetric	/imetric	(B 435	(B 435	Analy	
Sample ID	Description	Sample Type Eelon)	TAT (Above)	Total Volume	Notes	Fibe	S	Asb	EPA	EPA	EPA	Grav	Gra	CAF	CAF	Lea	
\$358-*	please see attached	STOR	STD					R									
	Chain for Sample ID	ŝ															
	+ Desciptions																
		-															

SAMPLE TYPE CODES		RELINQUISHED BY	DATE & TIME	RECEIVED BY	DATE & TINE
A-Ar	W – Wipe	18 -	1/7/25	DROZOMEN	Icla1.
E-Bal	T – Tape	B	15:30	-quancario- c	12100
D – Dust	R - Rock				
SO - Soi	O - Other				10 sortin

By submitting this Chain of Custody, you agree to be bound by the terms and conditions set forth at: https://www.eurofinsus.com/environment-testing/built-environment/resources/sampling-guides-and-forms/ Copyright © 2022 Eurofins EPK Built Environment Testing, LLC

Project # / Task 61847558 Project Name Jordan Valley Water Treatment Plant Filter Building Inspector(s) Bracken Snyder Date 1/7/2025

HA Material Description Material Location Catagory Sample # Sample Locatic Quantity Chlorine Room- Thrappet 7358- or the war, Custies CMU Block Filter 7358- 02 NIN COLAN 2650sF 6 7358- 03 Eway Commod 003906210 7358-04 SE CARMY 7338-05 w was cand Cement/concure Throughart (Chloring from) 7358- 96 Tub wall, server Erst corner 7358- 07 West wall Gashed ~50000 7358-08 Sam entry Ship Black Care base + Chloring Kopm 7358- 09 East wall Sarth Crawed 3 adhesine 7358- 10 8.1 200LF 7358- 11 11 Tan care base + alway Chlanne harm 7358- 12 NW cam pmp pan. 4 7158- 13 11 100LF 7358- 14 p.f White Door Coulling Chippy Loom 7358-15 Wast Entry Dar 5 7358-16 11 100LF 7358- A 4

DyaniZamon 1/8/25

1070Hon

lerracon

1 = Category I non-friable asbestos-containing material (packings, gaskets, resilient floor coverings and asphalt roofing products)

2 = Category II non-friable asbestos-containing material (any material not specified in Category I)

3 = Regulated asbestos-containing material (RACM) (friable material or none friable but likely to become friable)

Project # / Task Project Name Inspector(s) Date

HA	Material Description	Material Location	Sample #	Sample Location	Category	Quantity
6	Pipe Goket Material	Chloring Moon	7358- 19 - 19 - 20	East wall, Sarth and on during it		10 sp.
7	Rep Filter	Chlorine Ram	- 21 - 22 - 23	East wall, Sover can prov it it it it		100 LF
g	Brick & Monter	Chloriae Dock	- 24 - 25 - 26	Chlanice Dack, S.E. Come 11		
9	Convete	chlorine Dock	- 27 - 28	Chlonine Dock, Eost mary, Santo contr		
0	Drywall	Maintenance office	- 29 - 30 - 31	Maintenne Office. SEC	-	
					-	

DyaniZanora 18/25

10304m

1 = Category I non-friable asbestos-containing material (packings, gaskets, resilient floor coverings and asphalt roofing products)

2 = Category II non-friable asbestos-containing material (any material not specified in Category I)

3 = Regulated asbestos-containing material (RACM) (friable material or none friable but likely to become friable)

lerracon

FIUJECL # / IdSK Project Name Inspector(s) Date

НА	Material Description	Material Location	Material Location Sample # Sample Location		
10	Cement	Mainthemer office, Boite Loom, Filter Gallery	7358 - 32 - 33 - 34	Boiler Room - w was control Filter Galloy - RMI NEC Filter Galloy - RM2 NEC	003906210
12	epory Floor	Majotenne office	- 35 - 36 - 37	Mechanic Office E Contract	
13	Gap Filter	Thraghout	- 38 - 39 - 40	Boiler Room, mest connots Filter Gallony - Joarway botun Ami tem?	
14	Pipe gasket Material	Throughout	- 41 - 42 - 43	Boillo Room, mest control Fite calling - RMI, SE come	
15	Insulation Tape	Throughout	- 44 - 4 5 - 46	Filter Galitery, RM2 - SE com	

Dyarizamon 18/25

1030AM

1 = Category I non-friable asbestos-containing material (packings, gaskets, resilient floor coverings and asphalt roofing products)

2 = Category II non-friable asbestos-containing material (any material not specified in Category I)

3 = Regulated asbestos-containing material (RACM) (friable material or none friable but likely to become friable)

Appendix D Photo Logs

Photo #1 HA-01: CMU Block Filler, not asbestos containing

Photo #3 HA-03: Black cove base and mastic, not asbestos containing

Photo #5 HA-05: White door caulking, not asbestos containing

Photo #2 HA-02: Cement in Chlorine Room, not asbestos containing

Photo #4 HA-04: Tan cove base and mastic, not asbestos containing

Photo #6 HA-06: Pipe gasket material in Chlorine Room, not asbestos containing

Photo #7 HA-07: Gap filler in Chlorine Room, not asbestos containing

Photo #9 HA-09: Concrete in Loading Dock, not asbestos containing

Photo #11 HA-11: Cement in basement, not asbestos containing

Photo #8 HA-08: Brick and mortar, not asbestos containing

Photo #10 containing

HA-10: Drywall system, not asbestos

Photo #12 HA-12: Epoxy floor, not asbestos containing

Photo #13 HA-13: Gap filler in basement, not asbestos containing

Photo #15 Chlorine storage rack—Lead concentration: 0.11 mg/cm²

Photo #17 Chlorine room big doors—Lead concentration: 0.07 mg/cm²

Photo #14 HA-14: Pipe gasket material in basement, not asbestos containing

Photo #16 Chlorine storage rack anchor—Lead concentration: 0.10 mg/cm²

Photo #18 Chlorine storage room hoist rail— Lead concentration: 0.08 mg/cm²

Photo #19 Chlorine room boiler piping—Lead concentration: 1.53 mg/cm²

Photo #21 Chlorine loading dock bollard—Lead concentration: 5.00 mg/cm²

Photo #23 Maintenance office black piping—Lead concentration: 0.06 mg/cm²

Photo #20 Chlorine room blue valve—Lead concentration: 1.00 mg/cm²

Photo #22 Chlorine loading dock valve—Lead concentration: 5.00 mg/cm²

Photo #24 Maintenance office purple compressed air line—Lead concentration: 2.99 mg/cm²

Photo #25 Filter gallery blue valve—Lead concentration 0.04 mg/cm²

Photo #27 Filter gallery light blue pipe—Lead concentration 0.04 mg/cm²

Photo #29 Filter deck blue valve—Lead concentration: 0.26 mg/cm²

Photo #26 Filter gallery light blue and gray pump—Lead concentration: Light blue 0.04 mg/cm², dark gray 0.03 mg/cm²

Photo #28 Filter gallery light blue valve—Lead concentration: 0.05 mg/cm²

Photo #30 Filter deck tan valve—Lead concentration: 0.06 mg/cm²

Photo #31 January 31, 2025: Filter Gallery old side, south side teal backwash header pipe running north-south—Lead concentration: 3.70 mg/cm²

Photo #33 January 31, 2025: Filter Gallery old side, north side teal backwash header pipe running east-west—Lead concentration: 0.06 mg/cm²

Photo #35 January 31, 2025: Filter Gallery old side, light blue electrics cover on gray pump—Lead concentration: 0.32 mg/cm²

Photo #32 January 31, 2025: Filter Gallery old side, south side teal backwash header pipe running east-west—Lead concentration: 3.72 mg/cm²

Photo #34 January 31, 2025: Filter gallery old side, two tone pipe –Lead concentration: White 0.47 mg/cm², light blue 0.24 mg/cm²

Photo #36 January 31, 2025: Filter gallery new side, gray pipe hanger on south backwash header—Lead concentration: 0.11 mg/cm²

Photo #37 January 31, 2025: Filter gallery new side, gray pipe hanger on south backwash header—Lead concentration: 0.09 mg/cm²

Photo #38 January 31, 2025: Filter gallery new side, gray pipe hanger on north backwash header—Lead concentration: 0.10 mg/cm²

Appendix E Lead Inspection Data Sheets

Measurement	Location	Component	Substrate	Color	Side	Result (mg/cm ²)
1	internal calibration	-	-	-	-	PASS
2	calibration	-	-	-	-	1.02
3	calibration	-	-	-	-	1.04
4	calibration	-	-	-	-	1.06
5	Chlorine room	Wall	CMU	White	D	0.00
6	Chlorine room	Wall	Cement	White	D	0.00
7	Chlorine room	Window	Metal	Brown	D	0.00
8	Chlorine room	Door frame	Metal	Brown	D	0.00
9	Chlorine room	Wall	Plater	White	D	0.00
10	Chlorine room	Wall	CMU	White	В	0.00
11	Chlorine room	Potable water pipe	Metal	Blue	А	0.00
12	Chlorine room	Chlorine tub wall (north)	Cement	Yellow	-	0.00
13	Chlorine room	Chlorine tub wall (south)	Cement	Yellow	-	0.00
14	Chlorine room	Fire suppression piping	Metal	Red	В	0.00
15	Chlorine room	Power outlet	Metal	Black	В	0.00
16	Chlorine room	Wall	CMU	White	В	0.00
17	Chlorine room	Ventilation	Fiberglass	White	В	0.00
18	Chlorine room	Support beam	Metal	White	В	0.00
19	Chlorine room	Entry step	Cement	Yellow	-	0.00
20	Chlorine room	Entry door	Metal	Brown	С	0.00
21	Chlorine room	Metal support	Metal	White	С	0.00
22	Chlorine room	Wall	CMU	White	С	0.00
23	Chlorine room	Storage racks	Metal	Gray	-	0.11

Measurement	Location	Component	Substrate	Color	Side	Result (mg/cm ²)
24	Chlorine room	Storage rack anchor	Metal	Gray	-	0.10
25	Chlorine room	Storage rack anchor	Metal	Green	-	0.00
26	Chlorine room	Big door bar	Metal	Orange	-	0.00
27	Chlorine room	Big door	Metal	Brown	-	0.07
28	Chlorine room	Hoist rail	Metal	Brown	-	0.08
29	Chlorine room	Boiler piping	Metal	Blue	-	1.53
30	Chlorine room	Wall	Cove base	Black	D	0.00
31	Chlorine room	Wall	Cove base	Tan	D	0.00
32	Chlorine room	Valve	Metal	Blue	-	1.00
33	Clorine loading dock	Floor	Concrete	Red	-	0.00
34	Clorine loading dock	Floor	Concrete	Yellow	-	0.00
35	Clorine loading dock	Bollard	Metal	Yellow	D	5.00
36	Clorine loading dock	Valve and pipe	Metal	Yellow	D	0.00
37	Clorine loading dock	Valve	Metal	Yellow	D	5.00
38	Clorine loading dock	Eye wash station	Metal	Yellow	D	0.00
39	Clorine loading dock	Teal pipe	Metal	Teal	D	0.00
40	Clorine loading dock	Collapsable barrier	Metal	Yellow	-	0.00
41	Clorine loading dock	Barrier base	Metal	Yellow	-	0.00
42	Maintenance room	Pump	Metal	Red	С	0.00
43	Maintenance room	Piping	Metal	Green	С	0.00
44	Maintenance room	Motor	Metal	Red	С	0.00
45	Maintenance room	Piping	Metal	Black	С	0.06
46	Maintenance room	Piping	Metal	Blue	С	0.00

Measurement	Location	Component	Substrate	Color	Side	Result (mg/cm ²)
47	Maintenance room	Compressed air line	Metal	Purple	С	2.99
48	Maintenance room	Natural gas line	Metal	Yellow	С	0.00
49	Boiler room	Water line	Metal	Teal	D	0.00
50	Boiler room	Valve	Metal	Red	D	0.00
51	Boiler room	Valve	Metal	Gray	D	0.00
52	Boiler room	Feeder tank	Cement	White	-	0.00
53	Boiler room	Blue line	Metal	Blue	-	0.00
54	Filter gallery	Flow to waste line	Metal	Tan	-	0.00
55	Filter gallery	Valve	Metal	Blue	-	0.04
56	Filter gallery	Valve	Metal	Blue	-	0.06
57	Filter gallery	Floor	Cement	Yellow	-	0.00
58	Filter gallery	Gray pump	Metal	Gray	-	0.00
59	Filter gallery	Gray pump	Metal	Gray	-	0.00
60	Filter gallery	Well	Cement	Blue	-	0.00
61	Filter gallery	Well	Cement	Yellow	-	0.00
62	Filter gallery	Pump	Metal	Dark gray	-	0.03
63	Filter gallery	Pump	Metal	Light blue	-	0.04
64	Filter gallery	Light blue line	Metal	Light blue	-	0.00
65	Filter gallery	Pump base	Metal	White	-	0.00
66	Filter gallery	Light blue pipe	Metal	Blue	-	0.04
67	Filter gallery	Light blue valve	Metal	Blue	-	0.05
68	Filter gallery	Pump	Metal	Blue	-	0.00
69	Filter gallery	Pump base	Metal	Blue	-	0.00
70	Filter gallery	Piping	Metal	Tan	-	0.00
71	Filter gallery	Pipe base	Metal	Tan	-	0.00

Measurement	Location	Component	Substrate	Color	Side	Result (mg/cm ²)
72	Filter gallery	Pipe tub	Cement	Gray	-	0.00
73	Filter deck	Beige valve	Metal	Beige	-	0.06
74	Filter deck	Blue valve	Metal	Blue	-	0.26
75	Calibration	-	-	-	-	1.09
76	Calibration	-	-	-	-	1.07
77	Calibration	-	-	-	-	1.06

Key:

A = North, B = East, C = South, D = West

mg/cm² = milligrams per square centimeter of surface area
Appendix E Table 2: Lead Coatings Summary | Date of Sampling: January 31, 2025 Jordan Valley Water Treatment Plant—Filter Building | Herriman, Utah February 3, 2025 | Terracon Project No. 61247358

.

Measurement	Location	Component	Substrate	Color	Side	(mg/cm ²)
1	internal calibration	-	-	-	-	PASS
2	calibration	-	-	-	-	1.02
3	calibration	-	-	-	-	1.02
4	calibration	-	-	-	-	1.03
5	Filter gallery, east side (old side)	Backwash header, south end; pipe running north- south	Metal	Teal	В	3.70
6	Filter gallery, east side (old side)	Backwash header, south end; pipe running east- west	Metal	Teal	С	3.72
7	Filter gallery, east side (old side)	Backwash header, south end; pipe running east- west	Metal	Light blue	С	0.00
8	Filter gallery, east side (old side)	Pipe hanger: backwash header, south side	Metal	Light blue	С	0.00
9	Filter gallery, east side (old side)	Pipe hanger: backwash header, north side	Metal	Light blue	A	0.03
10	Filter gallery, east side (old side)	Backwash Header, north side; pipe running east- west	Metal	Light blue	A	0.06

Appendix E Table 2: Lead Coatings Summary | Date of Sampling: January 31, 2025 Jordan Valley Water Treatment Plant—Filter Building | Herriman, Utah February 3, 2025 | Terracon Project No. 61247358

Measurement	Location	Component Substrate		Color	Side	Result (mg/cm ²)
11	Filter galley, east side (old side)	Electronics cover on gray Metal Light blue pump		A	0.32	
12	Filter galley, east side (old side)	Two tone (light blue/white) pipe	Two tone (light blue/white) Metal White pipe		С	0.47
13	Filter galley, east side (old side)	Light blue (light blue/white) pipe	Metal	Light blue	С	0.24
14	Filter galley, east side (old side)	Light blue filtered water pipe	Metal	Light blue	С	0.00
15	Filter gallery, west side (new side)	Backwash header, south side: pipe running east- west	Metal	Red	С	0.00
16	Filter gallery, west side (new side)	Backwash header, south side: pipe running east– west	Metal	Red	С	0.00
17	Filter gallery, west side (new side)	Backwash header, north side: pipe running east– west	Metal	Red	A	0.00
18	Filter gallery, west side (new side)	Pipe exiting filter tank, south side	Metal	Red	А	0.00
19	Filter gallery, west side (new side)	Pipe exiting filter tank, north side	Metal	Red	С	0.00

Appendix E Table 2: Lead Coatings Summary | Date of Sampling: January 31, 2025 Jordan Valley Water Treatment Plant—Filter Building | Herriman, Utah February 3, 2025 | Terracon Project No. 61247358

Measurement	Location	Component	Substrate	Color	Side	Result (mg/cm ²)
20	Filter gallery, west side (new side)	Pipe hanger: backwash header, south side	Metal	Gray	С	0.11
21	Filter gallery, west side (new side)	Pipe hanger: backwash header, south side	Metal	Gray	С	0.09
22	Filter gallery, west side (new side)	Pipe hanger: backwash header, north side	Metal	Gray	A	0.10
23	Calibration	-	-	-	-	1.03
24	Calibration	-	-	-	-	1.04
25	Calibration	-	-	-	-	1.01

Key:

A = North, B = East, C = South, D = West,

 mg/cm^2 = milligrams per square centimeter of surface area

Appendix F Universal Hazardous Waste Removal Cost Estimates Appendix F Table 4 - Hazardous Waste Removal Cost Estimates Jordan Valley Water Treatment Plant – Filter Building | Herriman, Utah February 3, 2025 | Terracon Project No. 61247358

Material	Location	Quantity	Approximate Removal Cost
Fluorescent lamps, 4-foot or less	Throughout	136	\$238.00
Light ballasts	Throughout	68	\$1,269.56
Light-Emitting Diode (LED)	Loading dock and filter gallery	34	\$340.00
Motion sensors	Throughout	6	\$60.00
Electric heaters	Throughout	7	\$111.77
Hot water heater	Boiler room	1	\$150.00
Emergency exit signs	Basement	1	\$250.00
Cationic polymer tote	Boiler room	330 Gal	\$7,500.00
Poly-aluminum chloride tote	Boiler room	330 Gal	\$7,500.00
Chlorine tanks	Chlorine room	18	\$12,150.00
Misc chemicals	Throughout	10	\$225.00
		Total	\$29,794.33

Notes:

- 1. Terracon can provide a follow-up visit to ensure these materials were removed and properly disposed of or recycled for a minimal additional cost.
- 2. Terracon can provide services to bid for removal of these items to local qualified contractors at an additional cost.

Appendix G Certifications

State of Utah

SPENCER J. COX Governor

DEIDRE HENDERSON Lieutenant Governor

July 11, 2024

Bracken Snyder Terracon Consultants 6952 South High Tech Drive, Suite B Midvale, UT 84047

Dear Mr. Snyder:

Re: Utah Asbestos Program Individual Certification Card

Department of

Environmental Quality

Kimberly D. Shellev

Executive Director

DIVISION OF AIR QUALITY Bryce C. Bird

Director

The Utah Division of Air Quality (DAQ) has reviewed your Utah Asbestos Program Certification Application for Individuals and we are pleased to inform you that your application has been approved. Your new asbestos program individual certification card is enclosed with this letter and this card is the sole method of individual certification documentation that you will receive from the DAQ.

Please check the information on your asbestos program certification card carefully. Please confirm that the photograph, name, and certification discipline(s) are correct. Also, please remember to keep your current asbestos program certification card with you at all times when you are performing regulated asbestos work activities.

Please contact Barbara Perkins at (801) 536-0221 or at bperkins@utah.gov if you have any questions regarding this letter or the enclosed asbestos program certification card.

Sincerely,

Leonard Wright (Jul 10, 2024 14:47 MDT)

Leonard Wright, Manager Air Toxics, Lead-Based Paint, and Asbestos Section

LW:BP:lr

ASB-8613 Inspector (Ep. 06/26/2025) August C Aug Director Ulah Division of Air Quality

DAQA-001-24

State of Utah GARY R. HERBERT

Governor

SPENCER J. COX Lieutenant Governor

March 19, 2020

John Murphy Terracon Consultants 6949 South High Tech Drive Midvale, UT 84047

Dear Mr. Murphy:

Re: Utah Asbestos Company Certification Card

Department of

Environmental Quality

L. Scott Baird

Executive Director

DIVISION OF AIR QUALITY Btyce C. Bird

Director

The Utah Division of Air Quality (DAQ) has received your Certification Application for Asbestos Company and we are pleased to inform you that your application has been approved. Your new Asbestos company certification card is enclosed with this letter and this card is the sole method of Asbestos company certification documentation that you will receive from the DAQ. Please check the information on your asbestos company certification card carefully and please confirm that the company name and certification expiration date are correct.

Please be aware that your company is certified to perform asbestos projects in accordance with applicable state and federal rules and the use of Utah certified individuals is mandatory. Also, your certification may be revoked or suspended if the Utah certified individual or company are found to be in violation of the asbestos certification and work practices standards found in Utah Administrative Code R307-801 or the National Emission Standard for Asbestos found in Title 40 Code of Federal Regulations Part 61 Subpart M.

Please contact Tamie Call at (801) 536-4007 or at twcall@utah.gov if you have any questions about this letter or the enclosed asbestos company certification card.

Sincerely,

Tim Elifet

Leonard Wright, Manager Air Toxics, Lead-Based Paint, and Asbestos Section

LW:TC:lr

195 North 1950 West, 4th Floor• Salt Lake City, UT Mailing Address: P.O. Box 144820 • Salt Lake City, UT 84114-4820 Telephone (801) 536-4000 • Fax (801) 536-4099 • T.D.D. (801) 903-3978 *www.deq.utah.gov* Printed on 100% recycled paper

Utah Department of Environmental Quality Division of Air Quality The Utah Division of Air Quality certifies that: **Terracoli Consultants, Inc** is hereby certified as an asbestos company in accordance with the provisions of Utah Administrative Code R307-801 Certification number: ASB-289 Expiration date: 03/31/25 /4=_c. Director, Utah Division of Air Quality

DAQA-003-20

APPENDIX C - GATE OPERATOR INSTALLATION AND OPERATION MANUAL

AutoGate, Inc. 7306 Driver Road P.O. Box 50 Berlin Heights, OH 44814 PH: 1.800.944.4283 FAX: 419.588.3514 www.AutoGate.com

Installation & Operation Manual Vertical Pivot (VP) Gate System VPL-24

This product is to be installed and serviced by a trained Gate Systems Technician only. Contact AutoGate for a local professional in your area. Before attempting to install, operate or maintain the operator you <u>MUST</u> read and fully understand this manual and follow all safety instructions.

1.800.944.4283

Table of Contents

Safety Instructions	2
Installation Check Off List	3
Safety Instructions	4
Safety Classifications	4
Primary and Secondary Entrapment Protections	5
Approved Photo Beams and Contact Sensors	5
Installation: Site Prep	6
Installation: Tools and Equipment	6
Installation: Receiving Your VP Gate and Operator	6
Installation: Installing Your VP Gate and Operator	7
Installation: Operator Wiring and Testing	9
Installation: Control Board	11
Installation: Primary/ Secondary Wiring	12
Manual Opteration	14
Troubleshooting	15
Maintenance	17
Balancing Your VP	17
Board Replacement	17
Accessory Installation Guide	18
Drawings	19-34

WARNING!

TO REDUCE THE RISK OF INJURY OR DEATH, READ AND FOLLOW ALL INSTRUCTIONS!

	\geq	
		REDUCE RISK
	1	Never let children operate or play with gate controls Keep
		the remote control away from children
	2	At NO time should the gate panel be modified in any way
	2.	Any mounted signs should weigh less than 4 lbs. Contact
	0.	AutoCate prior to mounting on gete papel for guideneo
	1	AutoGate phot to mounting on gate panel for guidance.
	4.	
		PERSON NOR OBJECT SHOULD CROSS THE PATH OF
	_	THE MOVING GATE.
	5.	Test the gate operator monthly. <u>The gate MUST reverse on</u>
		contact with a rigid object or stop when an object activates
		the non-contact sensors or contact sensor. After adjusting
		the force or the limit of travel, reset the gate operator. Fail-
		ure to adjust and reset the gate operator properly can in-
		crease the risk of injury or death. Use the belt tension lev-
		er release only when the gate is not moving and powered
		down.
	6.	KEEP GATES PROPERLY MAINTAINED. Read the own-
		er's manual. Have a qualified service person make repairs
		to gate hardware.
	7.	This gate system is for vehicles only. PEDESTRIANS
		MUST USE A SEPARATE ENTRANCE!
		SAVE THESE INSTRUCTIONS
		AUTOMATIC GATE OPERATORS CAN PRODUCE HIGH
	L I F	VELS OF FORCE. THEREFORE IT IS VERY IMPORTANT
	Т	HAT ALL GATE OPERATOR SYSTEM INSTALLERS AND
		DESIGNERS ARE FULLY AWARE OF POTENTIAL HAZ-
	<u>A</u>	RDS THAT EXIST WITH AN INCORRECTLY INSTALLED
	<u>0</u>	R DESIGNED SYSTEM. THE INTERNAL SAFETY CAPA-
		BILITIES OF A GATE OPERATOR SYSTEM ARE NOT
		TOR IS ONLY ONE PART OF A PROPERLY INSTALLED
		SYSTEM WHICH WHEN COMBINED WITH CORRECTLY
	Ī	NSTALLED REVERSING DEVICES WILL YIELD A COM-
	E	PLETE UL-325/CSA 22.2 NO. 247 LISTED SYSTEM THAT
	M	ILL NOT ONLY PROVIDE CONVENIENCE AND SECURI-
		Y, BUT WILL BE SAFER WITH A MINIMAL RISK OF INJU-
	Т	
		IST PROVIDED TO MAKE YOU AWARE OF POTENTIAL
	_	AREAS THAT ARE OF A SAFETY CONCERN. DISRE-
		GARDING ANY OF THE FOLLOWING MAY RESULT IN
		SERIOUS INJURY OR DEATH!
L		

TO REDUCE THE RISK OF INJURY OR DEATH, READ AND FOLLOW ALL INSTRUCTIONS!

ADDITIONAL SAFETY INSTRUCTIONS FOR INSTALLER AND OWNER

Proper design is important in your system layout and installation. Reversing devices must be used at all available points where injury or property damage may occur. For protection from injury to persons, use Photo Electric Eye(s) or optional Pressure Sensing Edge on the leading edge of the gate. Reversing Loops (Vehicle Detectors) should be installed in front of and behind the gate to provide a reverse signal or stop signal to the gate operator. All Reversing devices should be tested and inspected weekly. If a Reversing device appears to not operate correctly, the unit should be disabled until repair can be made by a properly trained/experienced service company.

As the system installer, you must advise your customer/end user on the correct usage of the gate operator and the system. In providing the service of design/installation of the operator and system, you are responsible for proper training of the customer as well as for the proper SAFE OPERATION. All precautions to eliminate ALL hazards MUST be taken before the unit can be put into operation. You MUST advise and warn your customer of any hazards that remain or if they choose not to use any of the recommended Reversing devices in the installation and not to put the system into operation until safety and risk concerns have been resolved.

- Check the National, State & local building/fire codes **<u>BEFORE</u>** installation
- If you did not order a *Reversing Edge* (for along the bottom rail of your gate), or an *Infra-Red Modulat-ed Photocell* (Reversing Beam), you will not be in compliance with March 2000 UL 325 Code, rev VI. Consult your dealer for additional information.
- Pedestrians *must use* a separate entrance/exit *and never* the vehicular entrance/exit gate.
- NEVER activate the gate from long distances where visibility of the gate cannot be seen. Anyone operating the gate should always operate it in a safe manner.
- **NEVER** allow children or anyone to play on or around the gate at any time.
- DO NOT affix any adhesive material within 30 days of receipt.
- **DO NOT** attach anything to gate over 4 pounds total weight or 4 square feet without consulting the factory re-balancing instructions. **The gate must remain balanced to ensure safe and reliable operation.**
- The gate and operator are designed to work together. **Do not** attempt to install an unauthorized gate without factory authorization.
- DO NOT ALLOW any Access Control Devices to be mounted within 6 feet of the moving gate or in such a
 way that someone could reach their hand or arm through to gate to activate it.

WARNING!

THE GATE OPERATOR IS DESIGNED AND FACTORY BALANCED FOR THE SPECIFIC GATE IT WAS SUPPLIED WITH.

DO NOT MODIFY THE GATE IN ANY WAY OR ADD SIGNS WEIGHING MORE THAN 4 LBS TOTAL OR 4 SQUARE FT.

FAILURE TO COMPLY WITH THIS REQUIREMENT WILL VOID THE WARRANTY AND MAY RESULT IN SERIOUS INJURY OR DEATH.

1.800.944.4283

INSTALLATION CHECK OFF LIST

IT IS RECOMMENDED THAT EACH ITEM ON THIS INSTALLATION CHECKOFF LIST BE DISCUSSED WITH THE CUSTOMER.

FOUR <u>WARNING SIGNS SECURELY INSTALLED</u>, TWO ON EACH SIDE OF GATE VISABLE IN BOTH OPEN AND CLOSED POSTION..(REQUIRED)

_____1 OR 2 <u>REVERSING</u> PHOTO BEAMS INSTALLED ACCORDING TO THEIR INSTRUCTIONS, ONE ACROSS EACH SIDE OF GATE OPENING IN AREAS THAT POSE ENTRAPMENT RISK. IF USING HARD WIRED CONTACT SENSORS, THE SENSOR(S)/WIRING MUST BE <u>LOCATED /WIRED TO AVOID ANY MECHANICAL DAMAGE</u>.

INSTALL TWO GROUP 24, 12 VDC BATTERIES (REQUIRED) - DEEP CYCLE MARINE RECOMMENDED.

CUSTOMER ADVISED THAT GATE IS FOR VEHICULAR TRAFFIC ONLY. (REQUIRED)

_____A <u>SEPARATE PEDESTRIAN</u> ENTRY AND/OR EXIT IS PROVIDED. (REQUIRED)

____GATE GUARD / FENCED OFF AREA INSTALLED ON BACK SIDE OF OPERATOR. (REQUIRED)

KICK PLATE INSTALLED ON DOOR SIDE OF OPERATOR. (REQUIRED)

ALL ACTUATING CONTROLS LOCATED FAR OUT OF REACH OF OPERATOR & GATE (MINIMAL 6 feet). (REQUIRED)

____ENSURE THE CLASS OF OPERATOR IS APPROVED FOR THE APPLICATION OF THE OPERATOR (CLASS 1,2,3,4) (REQUIRED)

CONTROLS INTENDED TO RESET GATE AFTER OBSTRUCTED INSTALLED IN LINE OF SIGHT (REQUIRED)

- _____ FIELD WIRING SECURED TO AVOID PINCHING DAMAGE.
- CUSTOMER INSTRUCTED AND IS CLEAR ON PROPER USE OF GATE OPERATOR. (REQUIRED)

CUSTOMER INSTRUCTED ON PROPER USE OF ALL CONTROL DEVICES USED WITH OPERATOR.

SAFETY INSTRUCTIONS WERE REVIEWED AND LEFT WITH CUSTOMER. (REQUIRED)

DISCUSS THE POTENTIAL FOR A PREVENTATIVE SERVICE AND MAINTENANCE CONTRACT.

____A PHOTO OF COMPLETED INSTALLATION TAKEN FROM FRONT AND BACK OF GATE & DATED.

- ____CUSTOMER TRAINED ON MANUAL OPERATION OF THE GATE. ADVISE CUSTOMER THAT FOR MANUAL OPERA-TION, THEY MUST DISCONNECT BATTERIES AND AC POWER.
- ____CUSTOMER ADVISED NOT TO DISCONECT THE UL 325 entrapment ALARM IN ANY WAY—SWITCH S1#6 AND S1#8 MUST STAY ON AT ALL TIMES.

ARE UL 325 PEDESTRIAN WARNING SIGNS VISIABLE FROM BOTH SIDES OF GATE IN BOTH OPEN & CLOSED POSTIONS?

(TAMPERING WITH THE ALARM SWITCH SETTINGS MAY POSE THE RISK OF SERIOUS INJURY OR DEATH) THIS GATE OPERATOR IS INSTALLED FOR USE AS A CLASS _____ INSTALLATION.

Operator Class Designation

CLASS I - RESIDENTIAL VEHICULAR GATE OPERATOR – A vehicular gate operator (or system) intended for use in garages or parking areas associated with a residence of one to four single families.

CLASS II – COMMERCIAL / GENERAL ACCESS VEHICULAR GATE OPERATOR – A vehicular gate operator (or system) intended for use in a commercial location or building such as a multi-family housing unit (five or more single family units), hotel, garages, retail store or other buildings accessible by or servicing the general public.

CLASS III – INDUSTRIAL / LIMITED ACCESS VEHICULAR GATE OPERATOR – A vehicular gate operator (or system) intended for use in an industrial location or building such as a factory or loading dock area or other locations not accessible by or intended to service the general public.

CLASS IV - RESTRICTED ACCESS VEHICULAR GATE OPERATOR – A vehicular gate operator (or system) intended for use in a guarded industrial location or building such as an airport security area or other restricted access locations not servicing the general public, in which unauthorized access is prevented via supervision by security personnel.

IT IS RECOMMENDED THAT CUSTOMER & INSTALLER MUST RETAIN A COPY OF THIS CHECK OFF LIST FOR THEIR RECORDS

1.800.944.4283

SAFETY INSTRUCTIONS REGARDING PRIMARY & SECONDARY ENTRAPMENT PROTECTION

THIS UNIT IS EQUIPED WITH ONE PRIMARY MEANS OF ENTRAPMENT PROTECTION (SEE UL-325 SECTION 30 - A GATE OPERATOR SHALL PROVIDE 1 **PRIMARY** (INHERENT) AND 1 **SECONDARY** ENTRAPMENT FEATURE.

<u>PRIMARY</u>: <u>TYPE A</u> – INHERENT ENTRAPMENT SENSING SYSTEMS - THE VPL-24 WILL REVERSE DIRECTION WHEN THE INHERENT <u>TYPE A</u> DEVICE SENSES AN OBSTRUCTION.

SECONDARY: <u>TYPE B1</u> – PROVISION FOR CONNECTION OF A NON-CONTACT SENSOR (PHOTOELECTRIC OR THE EQUIV-ALENT). <u>TYPE B2</u>— PROVISION FOR CONNECTION OF A CONTACT SENSOR (EDGE DEVICE OR EQUIVALENT).

NOTE: UNIT SHIPS WITH S1-6 ON & S1-8 OFF. DO NOT CHANGE THESE SETTINGS (SEE PAGE 12 FOR ILLISTRATION)

PRIMARY PROTECTION DESIGNATED <u>TYPE A</u> INHERENT PROTECTION. THE UNIT WILL REVERSE DIRECTION WHEN AN OBSTRUCTION IS SENSED WHILE MOVING IN EITHER DIRECTION. SENSITIVITY IS ADJUSTED AT IRD1 ON THE CONTROL BOARD. WHILE CLOSING, IF AN OBSTRUCTION IS SENSED BY THE PRIMARY INHERENT SENSOR, THE GATE WILL REVERSE AND OPEN TO THE FULL OPEN POSITION. THE GATE WILL REMAIN THERE UNTIL A CLOSE COMMAND IS RECEIVED OR WILL CLOSE BY TIMER AFTER NEW INPUT IS RECEIVED. IN ORDER FOR THE GATE TO CLOSE BY TIMER (IF ACTIVATED) A NEW INPUT ON TERMINALS J5 1-8 MUST BE GIVEN. IF AN INPUT IS STILL PRESENT WHEN THE GATE REACHED THE FULL OPEN POSITION, THIS INPUT WILL NEED TO BE RENEWED OR REMOVED AND ANOTHER INPUT GIVEN BEFORE THE CLOSE TIMER WILL CLOSE THE GATE.

ENTRAPMENT ALARM WILL ACTIVATE UPON THE PRIMARY INHERENT SENSOR SENSING A SECOND OBSTRUCTION BEFORE REACHING A LIMIT SWITCH. ONCE ACTIVATED, GATE WILL RE-MAIN AT REST, ALARM WILL SOUND. <u>THIS CONDITION CAN ONLY BE CLEARED BY AN INPUT</u> APPLIED TO J5#4. THE WIRING USED TO RESET THE OPERATOR <u>MUST BE IN THE LINE OF SIGHT</u> AND MUST BE AN "INTENDED" RESET. ACCESS CONTROL DEVICES OF ANY KIND THAT REQUIRE AN INTENDED (ON PURPOSE) ACTIVATION MAY BE USED FOR THIS RESET. DEVICES THAT WILL CAUSE AN <u>INCIDENTAL RESET</u> (VEHICLE DETECTORS, PROBES, TIMERS, MOTION SENSORS, PHOTO BEAMS, ECT...) MUST **NOT** BE USED. TURNING OFF DC BATTERY POWER <u>AND</u> TURNING OFF AC POWER AT THE GFCI SERVICE OUTLET WILL ALSO RESET THE CONTROL BOARD.

FAILURE TO COMPLY WITH THIS REQUIREMENT MAY RESULT IN SERIOUS INJURY OR DEATH.

IMPORTANT!

The secondary entrapment device must comply with UL 325, 6th edition effective criteria of Oct 14, 2013.

RECOMMENDED SECONDARY ENTRAPMENT DEVICES

PHOTO BEAMS

1)EMX INDUSTRIES 2)ALLEN BRADLEY 3)OMRON / MMTC MODEL#: IRB-325 MODEL#: 60-2728 MODEL#: E3K-R10K4-NR TRANSMITTER / RECEIVER TYPE RETRO-REFLECTIVE TYPE RETRO-REFLECTIVE TYPE

REVERSING EDGES (CONTACT EDGES) MILLER EDGE MODEL— ME-120

1.800.944.4283

DO NOT REMOVE THE TRANSPORT/MAINTENANCE SAFETY PIN UNTIL THE GATE IS SECURELY ATTACHED AND OPERATOR IS FASTENED TO THE CONCRETE PAD. THE OPERATOR ARM IS UNDER A GREAT DEAL OF TENSION & CAN CAUSE EXTREME DAMAGE AND INJURY IF RELEASED PREMATURELY!

Preparations Prior to Installation

SITE PREPARATION

Concrete Pads:

Concrete pads are required to install your VP Operator, & Yoke (See Dwg. #101), Along with securing the operator to the entry/exit point the pad provides a fixed and adequate foundation to resist many years of wind resistance and stability for many years of operation. Prior to pouring the concrete for the operator pad ensure the soil is undisturbed or compacted to local or governing standards.

4' X 7' Operator Pad Options:

- 1. Full Pad, Minimum depth of 36" or below *local* frost line (See Dwg. #102P).
- 2. 10"-12" thick pad with five (5) 12" dia. x 36" deep holes or below local frost line (See Dwg. #101).

NOTE: Operator pad MUST be poured level. Any exceptions MUST be communicated to AutoGate Engineering to ensure proper installation and operation. Yoke pad elevation details are special to your site conditions. Refer to your site drawings for specific information.

NOTE: All pads need to be level and smooth for ease of installation. Refer to (Dwg. #101) for all applicable conduit locations.

NOTE: Allow concrete to cure a min. of (3) three days before setting Operator & Gate Assembly.

INSTALLING GATE SYSTEM & ACCESSORIES

Recommended Installation Tools and Equipment for installing Gate, Operator, & Accessories

Lifting StrapMulti-Meter (DCV & AMPS)Hammer & LevelHammer Drill, 1/2 & 5/8 BitsGrease Gun, Lithium GreaseTape MeasureScrewdriver Sets (Flat & Phillips)½" Drive Socket Set: 9/16", 3/4", 15/16", 1-1/8"Open End Wrenches: 9/16", 3/4", 15/16", 1-5/16"Electrical TapeWire Cutters/StrippersElectrical TapeMisc. Electrical ConnectorsMisc. 18 GA StrandChalk LineBatteries

NOTE: Refer to manufacturer's instructions of Accessory Equipment for correct wire size and type. NOTE: (2) 12 VDC batteries are required and are not provided. Group 24 Deep cycle marine batteries are recommended.

RECEIVING YOUR VP GATE AND OPERATOR

Unloading & Unpacking - Gate weight per foot varies with gate style & height.

Product	Approx. Weight
Operator	1150 #
Steel Gate	24# / Ft.
Aluminum Gate	19# / Ft.

1. Have adequate equipment ready to unload your Gate & Operator safely (Forklift, Crane, Front End Loader or Wrecker with Telescoping Boom, see below Lifting Gate & Operator). (Utilize a Liftgate when available)

 Before removing your Gate and Operator from the truck, inspect it for any visible damage and make sure the Gate Box was shipped upright. (DO NOT DROP EITHER GATE OR OPERATOR BOX) Photograph and retain if damaged in shipping. Note all damages on delivery receipt before unpacking, look for hidden damage as well.

- 3. After uncrating your operator, locate and remove the door lock keys attached to the Transport /Maintenance (T/M) Safety Pin (See Dwg. #103). DO NOT REMOVE T/M PIN, ONLY REMOVE HAIR PIN RETAINER.
- 4. The Transmitters, Antenna, ordered accessories, and Shipping Packet will be enclosed inside your operator.
- 5. Unpack Gate Panel crate in the same careful manner. Note and photograph any damages.

1.800.944.4283

DO NOT REMOVE THE T/M SAFETY PIN UNTIL THE GATE IS SECURELY ATTACHED & OPERATOR IS FASTENED TO THE CONCRETE PAD. THE OPERATOR ARM IS UNDER A GREAT DEAL OF TENSION & CAN CAUSE EXTREME DAMAGE & INJURY IF RELEASED PREMATURELY!

INSTALLATION

INSTALLING VP GATE AND OPERATOR

Attaching the Gate to the Operator:

- 1. Position Gate on Operator Arm.
- Use (1) 3/4"-10 x 4 1/2" (STEEL) or (1) 3/4"-10 x 5" (ALUMINUM) Bolt for the top connection. Use (4) 1/2 x 1-1/2" Bolts for the bottom connection.
- 3. Insert the top bolt first and then the bottom (4) bolts finger tight. Be certain gate is properly aligned before tightening. Tighten bottom bolts first, then tighten top bolt.
- 4. Locate washers and Linkage Pivot Bolt (5/8" x 2-1/4") and insert through rod end fitting and tighten bolt into the gate lug hole as shown below. You may have to push down on the gate to insert Linkage Bolt.

Lifting Gate & Operator:

To lift Gate & Operator, (Crane, Front End Loader, Forklift or Wrecker with Telescoping Boom) use a lifting strap. The strap should be secured around Operator Arm and T/M Safety Pin or the top rail of the gate near the operator arm. (See Dwg. #103).

NOTE: It is recommended to attach Gate to Operator Arm **before** lifting (for better balance), but it is not mandatory. If using a Forklift to position Operator only, lift from sides only! Do not try to lift gate and operator together from the side (See Dwg. #103).

Positioning Operator & Gate:

Refer to the site drawing for your specific order as there may be details unique to the installation.

- 1. Place Gate & Operator Assembly on pad so the end of the Gate is centered over the Yoke pad or intended yoke position for the site (for yoke styles mounted to posts, buildings, etc.). Allow a minimum 3" from edge of pad to bolt holes to prevent concrete damage (See Dwg. #101 & #102).
- 2. Position and align Pad Yoke and center under gate. (See Dwg. #101).
- 3. Secure Operator with (1) 5/8" dia. Wedge Bolt in rear; check alignment on pad as well as gate panel alignment.
- 4. Install remaining 3 or 4 5 1/2" x 5/8" dia. Concrete Anchor Bolts provided, (level Gate & Operator on pad, if necessary.
- 5. Secure Yoke with 1/2" dia. Anchor bolts (provided).

NOTE: If installing a Ground Yoke, allow a minimum space of 2" between bottom of Gate and Yoke.

1.800.944.4283

DO NOT REMOVE THE T/M SAFETY PIN UNTIL THE GATE IS SECURELY ATTACHED & OPERA-TOR IS FASTENED TO THE CONCRETE PAD. THE OPERATOR ARM IS UNDER A GREAT DEAL OF TENSION & CAN CAUSE EXTREME DAMAGE & INJURY IF RELEASED PREMATURELY!

INSTALLATION—cont'd

Installing Other Components:

Cable Wind bracing:

If ordered, attach cable wind bracing to gate with Galvanized Nuts provided on the rods or cables; one nut attached near operator and one attached at gate bracket (See Dwg. #I-105-1 & 2.). Tighten each side equally.

1.800.944.4283

DO NOT REMOVE THE T/M SAFETY PIN UNTIL THE GATE IS SECURELY ATTACHED & OPERA-TOR IS FASTENED TO THE CONCRETE PAD. THE OPERATOR ARM IS UNDER A GREAT DEAL **OF TENSION & CAN CAUSE EXTREME DAMAGE & INJURY IF RELEASED PREMATURELY!**

INSTALLATION—cont'd

Gate Guard & Rear of Operator Entrapment Area:

Kick Plate: Attach the kick plate to the door side of the operator using the 3 # 12 x 3/4 tek screws. See green example kick Plate below.

1.800.944.4283

TO REDUCE THE RISK OF ELECTRICAL SHOCK, THIS EQUIPMENT HAS A GFCI TYPE PLUG THAT HAS A THIRD (GROUNDING) PIN. THIS PLUG WILL ONLY FIT INTO A GROUNDING TYPE OUTLET. IF THE PLUG DOES NOT FIT IN THE OUTLET, CONTACT A QUALIFIED ELECTRICIAN TO INSTALL THE PROPER OUTLET. DO NOT CHANGE THE PLUG IN ANY WAY.

OPERATOR WIRING & TESTING

Connecting AC Power (See Dwg. # 103)

- 1. Turn Off DC power.
- 2. Wire incoming AC power to the 4 x 4 Box provided and turn on the breaker from your AC Source.
- 3. Turn AC Power Switch on at the 4 x 4 Box.

NOTE: The A/C Power must be connected by a qualified, licensed Electrician, according to the <u>National Electric Code</u>, and all State and local codes. Refer to electrical block diagram for additional information.

Pre-Mounted 120vac Electrical Outlet & AC Power Switch Electrical Connection

WARNING!

ADDITIONAL 120 VAC SURGE PROTECTION IS RECOMMENDED BUT NOT REQUIRED. SURGE UNIT *MUST* BE GROUNDED TO A TRUE EARTH GROUND.

AC OUTLETS ARE <u>HOT</u> AT ALL TIMES. OUTLETS ARE FOR SERVICE USE ONLY.

OPERATOR MUST BE GROUNDED TO TRUE EARTH GROUND LUG LOCATED ON FRAME (See Dwg. # 103)

1.800.944.4283

DO NOT ATTEMPT TO CONNECT BATTERIES OR POWER-UP GATE & OPERATOR UNTIL ALL ACCESSORIES HAVE BEEN COMPLETELY CONNECTED & CHECKED.

OPERATOR WIRING & TESTING (con't)

Connecting Batteries - Required

- 1. Install (2) 12 VDC Batteries (not provided by AutoGate) on the battery shelf. AutoGate recommends Group 24, 100 Amp hour deep cycle marine batteries for extended battery back up. At a minimum use 7 AH batteries for battery back up. See drawing below for proper battery and jumper hook up.
- 2. Install Jumper Wire (provided) from Batt. #1 POSITIVE to Batt. #2 NEGATIVE (See Below).
- 3. Locate RED and BLACK Power Wires and connect:
- **NOTE**: Battery back up duration will depend on the size of batteries, number of accessories and open/close cycles while being powered by the batteries.

Testing System Wiring

1. Remove T/M Safety Pin from front of Operator and hang it on the hook provided inside access door.

NOTE: It may be necessary to push down on end of gate in order to take pressure off T/M Safety Pin.

- 2. Temporarily remove any wires in the main circuit board Terminal #5 (rev. / safety) to disable any Reversing devices not installed from preventing the gate from closing. (See Board Dwg. #113)
- 3. Turn Main DC Power Switch "on". (Located under the Control Box) Use the S3 manual open/close switch on the control board, (See Dwg. #103-R) to test your gate system (refer to Dwg #113 for wiring schematic).
- 4. After testing the DC, turn off the DC toggle switch, turn on AC back to "on" and repeat the testing.

NOTE: Your gate should activate and open in approximately 10-12 seconds. If your gate does not lift properly, refer to "Troubleshooting Tips" on page 12.

Testing Accessory Wiring (Ref. Electrical block diagram for additional information)

- 1. Turn off AC & DC power switches while connecting accessory wiring.
- 2. Reattach ALL wires removed from main circuit board Terminal #5 (reversing).
- 3. Complete the *wiring & testing* of each accessory component one at a time.

Note: See optional accessories installation instructions included with each product purchased. For example, to test the Reversing Beam, interrupt the beam when the gate is on the way down. The gate should stop and reverse when the beam has been broken or interrupted. Do the same for the Loops, Keypads, etc.

1.800.944.4283

OPERATOR WIRING & TESTING (con't)

CONTROL BOARD

Your VP gate has many features and options. Most are controlled by an electronic circuit board inside the Control Box. Your circuit board is factory-set and should not be altered in any way or the Warranty may be voided. If an adjustment has to be made, consult your "Gate Board Instructions" for details. If you need any further assistance, please contact your local AutoGate Dealer or call AutoGate at 1-800-944-4283.

Timers and Mode Selections (S1) SEE DIAGRAM BELOW

Full Speed Run Timer – Switch Pack S1 (1-5) Switches 1 through 5 are FACTORY PRESET. DO NOT CHANGE!

Mode Selections – Switch Pack S1 (6-8). SEE DIAGRAM ABOVE SWITCH 6 – "On". This is set for the UL 325 Alarm. (*DO NOT CHANGE!).* SWITCH 7 - FACTORY PRESET. (*DO NOT CHANGE!).*

SWITCH 8 - "Off" Not used on this system

Timers & Mode Selections – Switch Pack S2 (1-8). SEE DIAGRAM ABOVE

Switches 1-5 on S2 are for the closing timer delay. Default is S2-4 "ON" to provide a 8 second delay if activated. If S2-7 is on, the gate will auto close by timer.

SWITCH 6 – Sets aux. Open input terminal #4 at J5 to be pulse open-pulse close (Default is On).

SWITCH 7 – AUTO CLOSE TIMER – Default is ON. When on, use S2 1-5 to set close time delay. When close timer is selected, you MUST install vehicle and pedestrian detection devices.

SWITCH 8 – AUTO OPEN ON POWER FAILURE – When switch 8 is in the ON position, the operator will automatically open the gate approximately 15 seconds after the loss of power. Once power is restored, the operator will resume normal operation. Factory setting is "OFF" allowing the operator to function normally until the battery power has diminished. Once A/C has been restored, the operator will function normally.

Note: If batteries were completely discharged, remove from operator and recharge with a commercial grade battery charger.

WARNING

INHERENT REVERSE DEVICE (IRD) SHOULD BE TESTED PERIODICALY TO INSURE PROPER OPERATION.

1.800.944.4283

INHERENT REVERSE DEVICE (IRD) SHOULD BE TESTED PERIODICALY TO INSURE PROPER OPERATION.

Inherent Reverse Device (IRD)

The *Instant Reverse Device* is an internal circuit that continuously monitors the motors current for increase draw. This is factory preset for your specific gate size. To test for proper operation, position yourself approximately 2/3 of the way across the driveway. With the gate descending, carefully catch the gate to simulate an obstruction and it should stop and reverse within two (2) seconds. If the gate does not reverse, call the factory for technical assistance. If obstructed while closing, the gate will stop and reverse to the open position, time out (using the time delay set at S2 switches 1-5) and then close. If gate is opening when obstructed, the gate will stop its open travel. If inputs are present, gate will remain stopped. If no inputs are present or existing are cleared, the gate will time out and

Primary—Secondary Wiring (two systems designed to work together and an entry or exit point)

In a primary/secondary configuration, either unit can be the primary. Choose one unit to be the master and then direct all control wiring to it (also install vehicle detector and receivers in it). At the PRIMARY **any input (at J5) with control (detectors, receivers, keypads, timers, etc...) wires to it must also be run to the same terminals of the secondary system.** Along with these control wires, both operators MUST share a common ground connection from chassis to chassis (or from common to common , i.e. master gate J5 terminal #12 to secondary unit J5 terminal #12).

EXAMPLE: If only open and reversing are used at master then three wires will run between gates.

If it is required that if one gate senses an obstruction, the other reverses also, then 3 additional wires must be run between the primary J3 and secondary J3 as shown below. These connections are for transmitting IRD (obstruction signals) between both units. This will allow the primary or secondary to inform the other that a closing obstruction has occurred and for it to also reverse and open. **SET** switches on **S2**, **1-8** the same on both gates.

1.800.944.4283

WARNING: DISCONNECT BATTERIES AND AC POWER BEFORE SERVICING ANY MECHANICAL OR MOVING COMPONENTS! WARNING: FOR CONTINUED PROTECTION AGAINST FIRE, ONLY REPLACE WITH THE SAME TYPE AND RATING OF FUSE.

TROUBLE SHOOTING & CHECKING CONTROL BOARD

BATTERY CHECKOUT – When the batteries become weak the gate can begin to run noticeably slower. (NOTE: Batteries should only be checked when you are sure they have had adequate time to fully charge.) Turn off the AC power and run gate for 5 to 10 cycles while observing low battery indicator LED D12. If LED 12 comes ON, batteries are too weak to function properly. If LED 12 does not light, then voltage should be checked as they still may be near failure. Correct voltage is a minimum of 25VDC. (NOTE: If LED D12 does light, gate will open to conserve batteries in this test or in a real power loss, even if mode switch 8 is on S2 is off.) Return of AC power will clear the low battery indicator. If the batteries are not completely drained, you may have to charge the batteries as they may be too weak. Correct charge voltage is 27.5 VDC with batteries not connected (adjustment is at R63).

GATE WILL NOT CLOSE - Check for any active inputs on terminal inputs D15-D24, AC power loss, AC power switch is off or weak batteries. Check that batteries are connected properly. Is switch S3 in "ON" position (this is manual open switch). Check if S2 switch number 8 is in "ON" position and if AC power is lost, See LED D14. Check LED D12, if lit and AC power is off, then batteries need to be charged or replaced.

GATE WILL NOT OPEN - Check for AC power loss at D14 (check AC power switch) and that batteries are fully charged. Check fuses and if inputs are wired correctly, test S3 manual open switch.

GATE DEAD – NO OPERATION

- Make sure both DC Power Toggle Switch and A/C Power switch are on. If no LED lights are "lit" on the board proceed to #2. If LED lights are "lit" verify HBEAT (D11) is flashing? If flashing proceed and D12 BAT LOW LED is off proceed to #2. If HBEAT (D11) is not flashing and other LED's are "lit" the control board is bad (contact AutoGate for replacement).
- 2. Check A/C indicator light on cabinet, is it on? Yes, go to step #3, no, Check 3 amp fuse on battery tray, if good, go to step #3, if bad replace and check again, if no A/C, source external power problem back to fuse box.
- 3. Check F3 & F4 fuses on control board. If bad, replace. If they continue to blow the control board is bad.
- 4. If D14 (AC) & D5 (BRAKE) are on, then gate has repeatedly sensed obstructions. Clear obstruction, turn off AC and DC power. Now turn AC and DC power back on and test system.
- 5. If steps above do not restore operation contact AutoGate Tech Support

IRD (D2) LED IS FLASHING, MRT (Maximum Run Timer) has expired. Gate was unable to reach the closed limit switch. Check that fast run timer is set to run as long as possible.

FUSE(S) ARE BLOWN - F3 (15 AMP AC) AND/OR F4 (15 AMP DC) Check for shorts in wiring. If F3 AC fuse is blown, then batteries may also be dead. If you continue to blow fuses and no apparent shortages are visible, you most likely have a blown circuit board and it will need to be replaced.

GATE CLOSES THEN REVERSES - See IRD adjustments, also check for obstacles in gate travel, such as trees, sticks, etc. Charge voltage to batteries too low, adjust at R63. If gate closes an motor continues to run the limit switch may need adjustment or replacement. With batteries disconnected, set to 27.5.

IRD OBSTRUCTION SIGNAL TO OTHER GATE NOT WORKING CORRECTLY - Remove connector at J3, obstruct gate, LED D13 should go off for a few seconds. This indicates signal was transmitted. Be sure gates have a common ground.

MANUAL OPERATION

Your VP gate is easily operated manually in the event of total power or component failure.

- 1. Turn main power switches off (both A/C & D/C).
- 2. Release the belt tension lever located under the gear motor to remove the belt tension.
- 3. Position yourself in front of operator and lift up on Linkage Arm at the pivot point 1"-2". (See dwg. #103).
- 4. Walk out to end of gate and lift gate to the open position.
- 5. Place the T/M pin through the bracket holes to prevent the gate from lowering.
- 6. Secure the belt tension lever in the locked position to re-apply tension to the belts.

NOTE: It only takes 16 - 30 lb. of force to open gate. If more is required, contact your dealer or factory.

VPL 24 ELECTRICAL QUICK CHECK

VPL 24 Electrical Quick Check

Follow the steps in this chart to see if you can restore service of your gate. This is a visual check without the use of a voltmeter. Start by opening the cabinet door to the operator. Then open the electrical control box and look on the control board for the HBEAT LED, located at the lower left corner of the control board.

MAINTENANCE

The Basic electric and mechanical systems require only minimum routine maintenance. The following items should be checked and serviced periodically depending on amount of use. (See Dwg. #103 for lube locations).

ITEM	RECOMMENDED MAINTENANCE
Grease pivot points on Linkage Assembly	10,000 cycles or 6 months
("LUBRIPLATE 'R' LOW TEMP" Grease)	
Grease all bearings: (2) Operator Arm, (4) Bullwheel Shafts	Every 6 months
Grease Chain Tension Bolt and Lube Chain & lightly coat springs	Every 6 months
Check belts for wear and tightness.	Every 6 months
(Belt flex between motor and Intermediate sheaves is 1/4" deflection & between intermediate and final drive sheaves should be tightened to minimum deflection). Belt(s) loose or worn require replacement.	
Charge voltage for batteries should be 27.5 VDC with batteries disconnected check at battery terminals on control board (set at R63).	Every 6 months
Check battery water level, use distilled water only (Not required on maintenance -free)	Every 6 months
Clean snow/ice off of gate (Balance Correctly, gate will temporarily tolerate an add'l 10 lb. of wt.)	As needed
Clean lenses on Photocells or Reflectors	As needed
Lubricate (Graphite Oil) all lock cylinders and mechanisms	Every 6 months
Check and verify proper operation of all secondary entrapment devices.	Every month
Check and verify proper operation of all <i>primary</i> reversing feature. (see Section V, Item #2-A)	Every month

Touch-Up Paint - For scratches and following minor repairs use Rustoleum® Painters Touch 2x Ultra Cover (Gloss) to match the AutoGate Standard Colors: Black, Dark Gray, Kona Brown, Hunter Green, & White.

Balancing a Gate

Recommended four months after installation, then annually. It is recommended to check the balance of your VP Operator. It is mandatory to re-check the balance if you change spring(s). You can monitor it on the amp meter installed on the control box door. It is recommended to follow the instructions below for accurate balancing numbers using a commercial grade AMP meter. Remove the wire nut on the **RED** motor lead and hook up one Amp Meter lead to the **RED** wire and the other Amp Meter lead to the **ORANGE** wire. Cycle the gate up and down and record the highest amp reading in both directions (reading should be in the 2.0 to 6.0 range). The highest reading for both the up and down cycles should be very close to the same. If not, you will have to adjust the SLIDE ASSY. (see Dwg. # 107).

Loosen the 1 1/8" nuts on either side of the Slide Assy. Angle on the Threaded Rod. *If the gate Amps are too high in the OPEN mode, move the Slide Assy. UP to help it OPEN.* (This is the most common adj. Made). *If the gate is flying open and struggling to close, move the Slide Assy. DOWN.* Only adjust the Slide Assy. 1/4" (3 to 4 turns) at a time when adjusting. After each adjustment, check your amp readings.

When you have the gate back in balance (within a half amp (.5) is minimal), tighten both nuts on Slide Assembly threaded rod.

Board Replacement

Turn ALL power off **(AC & DC)** to the board. Remove (slide off) J2 "Open & Close" Limit Switch Terminal strip. Remove (slide off) Accessories 1 through 12 Terminal strip. Carefully remove the wires for the 24vdc Acc. Power, Battery Power, AC Power & Motor wires. Take the board off the Standoffs and remove the (2) mounting bolts and replace with your NEW circuit board and put all wires and connections back in the same place.

Double check the D.I.P. switch settings to be sure they are the same as your original board.

1.800.944.4283

AutoGate Technical Support

September 2, 2014

VIII. OPTIONAL ACCESSORIES INSTALLATION INSTRUCTIONS

(Your gate order may not have included any or all of these accessories)

CAUTION! Failure to completely install any Reversing Devices may cause your gate to default Open. (Ex.: Hooking up your Loop Wires to the Socket Base while not having the Detector plugged in, or having your IFR Receiver hooked up and not the IFR Transmitter.)

NOTE: Refer to electrical block diagram for additional information on all accessory wiring.

A. Reversing/Free Exit Loops and Detectors:

1. Locate your "Homerun" lead-in Loop wires and connect the Free Exit Loop to Socket Base connections #7 & #8 (Free Exit Device).

2. Locate your "Homerun" lead-in Loop wires and connect the Reversing Loop(s) to Socket Base connections #7 & #8. You can wire (2) two Reversing Loops to (1) one Socket Base (Reversing Device). Check the loop instructions for proper phasing.

3. Plug in your Loop Detector in the pre-wired socket base(s).

B. Photoelectric Sensors:

Refer to page 7 of this guide for the list of UL 325 approved components and to the manufacturer's instructions for their proper installation.

- 1. Verify voltage compatibility, 24 VDC is required.
- 2. Connect signal wire N.O. (normally open) to terminal #5 on your control board.
- 3. Connect the ground wire to terminal 9, 10, 11 or 12 (commons).
- 4. Connect the power wires to the terminal strip located inside the control box.

C. Contact Sensor Edge:

Refer to page 10 of this guide for the list of UL 325 approved components and to the manufacturer's instructions for their proper installation.

- 1. Connect signal wire N.O. (normally open) to terminal #5 on your control board.
- 2. Connect the ground wire to terminal 9, 10, 11 or 12 (commons).
- 3. Be certain all wires are secured to prevent damage to the gate during operation.

D. Vehicle Sensor Probe (Car-Sense 101):

1. Locate the Car-Sense 101 Vehicle Sensing Probe either along the edge of the Exit Drive or install in the pavement as shown on Dwg. # 108.

2. Once installed, run the 2-conductor cable to Socket Base connections #6, 7 & 8 (Free Exit Device).

Refer to manufacturer's instructions for proper wiring.

- 3. Connect the power wires to the terminal strip located inside the control box.
- 4. Connect signal wire to an open terminal 1, 2, 3.
- 5. Connect the ground wire to terminal 9, 10, 11 or 12 (commons).
- 6. Plug in you Car Sense Detector in the pre-wired socket base. Refer to Manufacturer's Instructions.

E. Gate Auto Timer:

Install your timer in the electrical box.

Run a power wire from the timer terminal "A" to the "Positive" on the control board, run a power wire from the timer terminal "B" to the "Negative" on the control board.

Run a power wire from the timer terminal "1" to "1", "2", or "3" on the control board, run a power wire from the timer terminal "2" to "9", "10", "11" or "12" on the control board.

F. Keypads:

1. Refer to your Keypad Manufacturers Instructions for complete wiring.

2. Run the power wires to Terminal Strip main power (+ and -).

3. The **N.O. & Common** signal wires to open the gate need to be attached to the Circuit Board #'s 1, 2 or 3 (Open) & 9, 10, 11 or 12 (Common) (Refer to Manufacturer's Instructions).

G. Card Readers:

1. Refer to your Card Reader Manufacturer's Instructions for complete wiring.

2. Run the power wires to Terminal Strip main power (+ and -).

3. The **N.O. & Common** signal wires to open the gate need to be attached to the Circuit Board #'s 1, 2 or 3 (Open) & 9, 10, 11 or 12 (Common) (Refer to Manufacturer's Instructions).

4. We recommend using a grounding rod to minimize lightning damage.

H. Phone Systems:

1. Refer to your Phone System Manufacturers Instructions for complete wiring

2. Most phone systems require a dedicated power supply and therefore they may not function during a power outage.

3. The **N.O. & Common** signal wires to open the gate need to be attached to the Circuit Board #'s 1, 2 or 3 (Open) & 9, 10, 11 or 12 (Common) (Refer to Manufacturer's Instructions).

4. We recommend using a grounding rod to minimize lightning damage.

NOTE: Refer to bottom of page 5 for approved UL 325 Compliant components.

E-VAUTOCAD DRAWINGS/LAYOUT AND SITE DRAWINGS/STANDARD VPL DRAWINGS/100-R OPERATOR & ACCESSORY SITE LAYOUT RH.DWG

√ MKS 06/06/14

E:\AUTOCAD DRAWINGS\LAYOUT AND SITE DRAWINGS\STANDARD VPL DRAWINGS\101-R STANDARD LAYOUT DIMENSIONS RH.DWG

E:\AUTOCAD DRAWINGS\LAYOUT AND SITE DRAWINGS\STANDARD VPL DRAWINGS\102C-R CONDUIT PAD LOCATION RH.DWG

E \AUTOCAD DRAWINGS\LAYOUT AND SITE DRAWINGS\STANDARD VPL DRAWINGS\102-P PAD LAYOUT DWG

RIGHTHAND OPERATOR

PUBLIC SIDE

NOTES:

- 1) PAD DIMENSIONS CAN VARY PER SITE
- 2) LEAVE AT LEAST 3" BETWEEN ANCHOR AND EDGE OF PAD
- 3) ALL PADS MUST BE POURED LEVEL AND BELOW LOCAL FROST LINE DEPTH

					NOTICE THE INFORMATION CONTAINED	Date:	12/07/05	NC	AutoGate
		DO NOT SCALE		ON THIS DOCUMENT IS CONFIDENTIAL. ANY DISSEMINATION UNAPPROVED	Drn. By	MKS		Gate Entry Systems	
Rev.:	Description:	Date:	Drn. By:	Ckd. By:	DISCLOSURE OR COPYING OF THIS INFORMATION IS	Ckd. By	DMR		Berlin Heights, Ohio FAX (419) 588-3514
С	Updated drawing	1/24/13	SLD		STRICTLY PROHIBITED	Dwg.:	102-R		
В	Removed "Stub conduits under operator when possible" note	02/04/10	MKS		DIMENSIONS ARE IN INCHES	-	01	D. J. J. J. J.	(D ¹ + 1) + 1)
А	Conduit locations were moved outside the pad	07/18/08	MKS		ANGLES ± 1° X/X ± 1/32, .XX ± .01, .XXX ± .005	Title:	Standard	Pad Layout	(Righthand)

E:\AUTOCAD DRAWINGS\LAYOUT AND SITE DRAWINGS\STANDARD VPL DRAWINGS\102-R STANDARD PAD LAYOUT RH.DWG

√ MKS 07/01/14

E:AUTOCAD DRAWINGS/LAYOUT AND SITE DRAWINGS/STANDARD VPL DRAWINGS/103-DR OPERATOR DETAILS.DWG

E:\AutoCAD Drawings\Layout and Site Drawings\Standard VPL Drawings\105 Yoke Styles dwg

E:\AutoCAD Drawings\Layout and Site Drawings\Standard VPL Drawings\107 Balancing Slide Assembly.dwg

CONTROL BOARD LAYOUT

READ SAFETY INSTRUCTIONS BEFORE WIRING

E:\AutoCAD Drawings\Layout and Site Drawings\Standard VPL Drawings\109 Control Board Layout.dwg

KAY 09/15/2014

E:\AutoCAD Drawings\Layout and Site Drawings\Standard VPL Drawings\111 & 112 Std Goosenecks.dwg

Intel GOUSETIECK WILL DUNATOS 3ite Drawings\Standard VPL Drawings\111 & 112 Std Go	ANGLES ± 1 X/X ± 1/32, XX ± .01, XXX ±	SLD E:\Au	1/24/13	wing	A Updated dra	5/2014	KAY 9/1
FIED Dwg: 112	UNLESS OTHERWISE SPECI DIMENSIONS ARE IN INCH	КАҮ МК	09/15/14	PICAL NOTE	B ADDED TYF		
Supercedes: 8/10/05	By: DISSEMINATION, UNAPPROV DISCLOSURE OR COPYING (THIS INFORMATION IS STRICTLY PROHIBITED	Drn By Ckd I	Date:	Description:	Rev.		
ED Date: 12/07/05 Drn. By: MKS	NOTICE THE INFORMATION CONTAIN ON THIS DOCUMENTIA		7				
		<u>0-В)</u>	3" BASE PL. (402	<u>STD. 8</u>	PROTECT KEYPAD NUFACTURER TUAL DIMENSIONS.	 POSITION BOLLARDS TO F TYP. LAYOUT - CHECK MA SPECIFICATIONS FOR ACT 	
			™ ∞ <u> </u> ∞ -		3 PROVIDED AL FROST LINE	VOTES: 1) 1/2" CONCRETE ANCHORS 2) POUR PADS BELOW LOCA	
	24"		•	0		90° ELBOW	
6 1/2" REF.	(REQ'D)	3/4" CONDUIT STUB I	+	31"	TYPICAL 3/4"	
			VARY PER SITE	<u>,</u>			
			TYPICAL BOLL FILLED W/CONCP DIRECT	<u>+</u>		2 1/2" 14 GA. SQ. TUBE	
	ರ್ಷ ರ್ಷ 				EPTH	WITH KEYPAD D	
					VARY –	SPACING WILL	

NOTES:

- 1) Gates over 9' tall will require local fencing (See shaded area).
- 2) Scale is in inches
- 3) Reference dwg. #'s 100, 101, 102, 103

